348 research outputs found

    Majorana Quasi-Particles Protected by Z2\mathbb{Z}_2 Angular Momentum Conservation

    Get PDF
    We show how angular momentum conservation can stabilise a symmetry-protected quasi-topological phase of matter supporting Majorana quasi-particles as edge modes in one-dimensional cold atom gases. We investigate a number-conserving four-species Hubbard model in the presence of spin-orbit coupling. The latter reduces the global spin symmetry to an angular momentum parity symmetry, which provides an extremely robust protection mechanism that does not rely on any coupling to additional reservoirs. The emergence of Majorana edge modes is elucidated using field theory techniques, and corroborated by density-matrix-renormalization-group simulations. Our results pave the way toward the observation of Majorana edge modes with alkaline-earth-like fermions in optical lattices, where all basic ingredients for our recipe - spin-orbit coupling and strong inter-orbital interactions - have been experimentally realized over the last two years.Comment: 12 pages (6 + 6 supplementary material

    Human brain distinctiveness based on EEG spectral coherence connectivity

    Full text link
    The use of EEG biometrics, for the purpose of automatic people recognition, has received increasing attention in the recent years. Most of current analysis rely on the extraction of features characterizing the activity of single brain regions, like power-spectrum estimates, thus neglecting possible temporal dependencies between the generated EEG signals. However, important physiological information can be extracted from the way different brain regions are functionally coupled. In this study, we propose a novel approach that fuses spectral coherencebased connectivity between different brain regions as a possibly viable biometric feature. The proposed approach is tested on a large dataset of subjects (N=108) during eyes-closed (EC) and eyes-open (EO) resting state conditions. The obtained recognition performances show that using brain connectivity leads to higher distinctiveness with respect to power-spectrum measurements, in both the experimental conditions. Notably, a 100% recognition accuracy is obtained in EC and EO when integrating functional connectivity between regions in the frontal lobe, while a lower 97.41% is obtained in EC (96.26% in EO) when fusing power spectrum information from centro-parietal regions. Taken together, these results suggest that functional connectivity patterns represent effective features for improving EEG-based biometric systems.Comment: Key words: EEG, Resting state, Biometrics, Spectral coherence, Match score fusio

    Localization in momentum space of ultracold atoms in incommensurate lattices

    Full text link
    We characterize the disorder induced localization in momentum space for ultracold atoms in one-dimensional incommensurate lattices, according to the dual Aubry-Andr\'e model. For low disorder the system is localized in momentum space, and the momentum distribution exhibits time-periodic oscillations of the relative intensity of its components. The behavior of these oscillations is explained by means of a simple three-mode approximation. We predict their frequency and visibility by using typical parameters of feasible experiments. Above the transition the system diffuses in momentum space, and the oscillations vanish when averaged over different realizations, offering a clear signature of the transition

    Quantum measures for density correlations in optical lattices

    Full text link
    The density-density correlation profiles obtained superimposing absorption images from atomic clouds freely expanding after the release of the confining optical lattice can be theoretically described in terms of a generalized quantum measure based on coherent-like states. We show that the corresponding density patterns differ in a testable way from those computed using standard many-body mean values, usually adopted in fitting experimental data.Comment: LaTeX, 14 page

    Superradiant light scattering from a moving Bose-Einstein condensate

    Get PDF
    We investigate the interaction of a moving BEC with a far detuned laser beam. Superradiant Rayleigh scattering arises from the spontaneous formation of a matter-wave grating due to the interference of two wavepackets with different momenta. The system is described by the CARL-BEC model which is a generalization of the Gross-Pitaevskii model to include the self-consistent evolution of the scattered field. The experiment gives evidence of a damping of the matter-wave grating which depends on the initial velocity of the condensate. We describe this damping in terms of a phase-diffusion decoherence process, in good agreement with the experimental results

    Localized and extended states in a disordered trap

    Full text link
    We study Anderson localization in a disordered potential combined with an inhomogeneous trap. We show that the spectrum displays both localized and extended states, which coexist at intermediate energies. In the region of coexistence, we find that the extended states result from confinement by the trap and are weakly affected by the disorder. Conversely, the localized states correspond to eigenstates of the disordered potential, which are only affected by the trap via an inhomogeneous energy shift. These results are relevant to disordered quantum gases and we propose a realistic scheme to observe the coexistence of localized and extended states in these systems.Comment: Published versio

    Collective excitations of a trapped Bose-Einstein condensate in the presence of a 1D optical lattice

    Full text link
    We study low-lying collective modes of a horizontally elongated 87Rb condensate produced in a 3D magnetic harmonic trap with the addition of a 1D periodic potential which is provided by a laser standing-wave along the horizontal axis. While the transverse breathing mode results unperturbed, quadrupole and dipole oscillations along the optical lattice are strongly modified. Precise measurements of the collective mode frequencies at different height of the optical barriers provide a stringent test of the theoretical model recently introduced [M.Kraemer et al. Phys. Rev. Lett. 88 180404 (2002)].Comment: 4 pages, 4 figure

    Coherent Manipulation of Orbital Feshbach Molecules of Two-Electron Atoms

    Get PDF
    Ultracold molecules have experienced increasing attention in recent years. Compared to ultracold atoms, they possess several unique properties that make them perfect candidates for the implementation of new quantum-technological applications in several fields, from quantum simulation to quantum sensing and metrology. In particular, ultracold molecules of two-electron atoms (such as strontium or ytterbium) also inherit the peculiar properties of these atomic species, above all the possibility to access metastable electronic states via direct excitation on optical clock transitions with ultimate sensitivity and accuracy. In this paper we report on the production and coherent manipulation of molecular bound states of two fermionic 173^{173}Yb atoms in different electronic (orbital) states 1^1S0_0 and 3^3P0_0 in proximity of a scattering resonance involving atoms in different spin and electronic states, called orbital Feshbach resonance. We demonstrate that orbital molecules can be coherently photoassociated starting from a gas of ground-state atoms in a three-dimensional optical lattices by observing several photoassociation and photodissociation cycles. We also show the possibility to coherently control the molecular internal state by using Raman-assisted transfer to swap the nuclear spin of one of the atoms forming the molecule, thus demonstrating a powerful manipulation and detection tool of these molecular bound states. Finally, by exploiting this peculiar detection technique we provide first information on the lifetime of the molecular states in a many-body setting, paving the way towards future investigations of strongly interacting Fermi gases in a still unexplored regime.Comment: 11 pages, 8 figure

    Synthetic dimensions and spin-orbit coupling with an optical clock transition

    Get PDF
    We demonstrate a novel way of synthesizing spin-orbit interactions in ultracold quantum gases, based on a single-photon optical clock transition coupling two long-lived electronic states of two-electron 173^{173}Yb atoms. By mapping the electronic states onto effective sites along a synthetic "electronic" dimension, we have engineered synthetic fermionic ladders with tunable magnetic fluxes. We have detected the spin-orbit coupling with fiber-link-enhanced clock spectroscopy and directly measured the emergence of chiral edge currents, probing them as a function of the magnetic field flux. These results open new directions for the investigation of topological states of matter with ultracold atomic gases.Comment: Minor changes with respect to v1 (we have corrected some typos, fixed the use of some mathematical symbols, added one reference
    • …
    corecore