273 research outputs found

    Automethylation of G9a and its implication in wider substrate specificity and HP1 binding.

    Get PDF
    Methylation of lysine residues on histones participates in transcriptional gene regulation. Lysine 9 methylation of histone H3 is a transcriptional repression signal, mediated by a family of SET domain containing AdoMet-dependent enzymes. G9a methyltransferase is a euchromatic histone H3 lysine 9 methyltransferase. Here, G9a is shown to methylate other cellular proteins, apart from histone H3, including automethylation of K239 residue. Automethylation of G9a did not impair or activate the enzymatic activity in vitro. The automethylation motif of G9a flanking target K239 (ARKT) has similarity with histone H3 lysine 9 regions (ARKS), and is identical to amino acids residues in EuHMT (ARKT) and mAM (ARKT). Under steady-state kinetic assay conditions, full-length G9a methylates peptides representing ARKS/T motif of H3, G9a, mAM and EuHMT efficiently. Automethylation of G9a at ARKT motif creates a binding site for HP1 class of protein and mutation of lysine in the motif impairs this binding. In COS-7 cells GFP fusion of the wild-type G9a co-localized with HP1alpha and HP1gamma isoforms whereas the G9a mutant with K239A displayed poor co-localization. Thus, apart from transcriptional repression and regulatory roles of lysine methylation, the non-histone protein methylation may create binding sites for cellular protein-protein interactions

    Measuring the distribution of current fluctuations through a Josephson junction with very short current pulses

    Full text link
    We propose to probe the distribution of current fluctuations by means of the escape probability histogram of a Josephson junction (JJ), obtained using very short bias current pulses in the adiabatic regime, where the low-frequency component of the current fluctuations plays a crucial role. We analyze the effect of the third cumulant on the histogram in the small skewness limit, and address two concrete examples assuming realistic parameters for the JJ. In the first one we study the effects due to fluctuations produced by a tunnel junction, finding that the signature of higher cumulants can be detected by taking the derivative of the escape probability with respect to current. In such a realistic situation, though, the determination of the whole distribution of current fluctuations requires an amplification of the cumulants. As a second example we consider magnetic flux fluctuations acting on a SQUID produced by a random telegraph source of noise.Comment: 6 pages, 6 figures; final versio

    Is neuroblastoma screening evaluation needed and feasible?

    Get PDF
    Despite the five million children who have been screened for neuroblastoma in Japan through detection of catecholamine metabolites, it is still uncertain whether screening for this disease is beneficial. The Japanese study has clearly indicated that screening at 6 months or earlier leads to heavy overdiagnosis. It is shown in this paper that screening at a later age may give the same reduction in mortality with possibly less overdiagnosis. However, it is estimated that, even with two screens at 12 and 18 months, the reduction in mortality would not greatly exceed 25%, under realistic hypotheses on the length of the preclinical phase of the disease. The evaluation of the efficacy of this screening strategy would need the recruitment of half a million children per year over 5-7 years and the follow-up of an equal number of controls. Such a trial would improve our knowledge of the natural history of the disease and might help to answer some questions raised recently regarding its biological heterogeneity

    Effective spin model for interband transport in a Wannier-Stark lattice system

    Full text link
    We show that the interband dynamics in a tilted two-band Bose-Hubbard model can be reduced to an analytically accessible spin model in the case of resonant interband oscillations. This allows us to predict the revival time of these oscillations which decay and revive due to inter-particle interactions. The presented mapping onto the spin model and the so achieved reduction of complexity has interesting perspectives for future studies of many-body systems.Comment: 7 pages, 4 figure

    Andreev bound states in high-TcT_c superconducting junctions

    Full text link
    The formation of bound states at surfaces of materials with an energy gap in the bulk electron spectrum is a well known physical phenomenon. At superconductor surfaces, quasiparticles with energies inside the superconducting gap Δ\Delta may be trapped in bound states in quantum wells, formed by total reflection against the vacuum and total Andreev reflection against the superconductor. Since an electron reflects as a hole and sends a Cooper pair into the superconductor, the surface states give rise to resonant transport of quasiparticle and Cooper pair currents, and may be observed in tunneling spectra. In superconducting junctions, these surface states may hybridize and form bound Andreev states, trapped between the superconducting electrodes. In d-wave superconductors, the order parameter changes sign under 90o90^o rotation and, as a consequence, Andreev reflection may lead to the formation of zero energy quasiparticle bound states, midgap states (MGS). The formation of MGS is a robust feature of d-wave superconductivity and provides a unified framework for many important effects which will be reviewed: large Josephson current, low-temperature anomaly of the critical Josephson current, π\pi-junction behavior, 0π0\to \pi junction crossover with temperature, zero-bias conductance peaks, paramagnetic currents, time reversal symmetry breaking, spontaneous interface currents, and resonance features in subgap currents. Taken together these effects, when observed in experiments, provide proof for d-wave superconductivity in the cuprates.Comment: 52 pages, 20 figures. Review article under consideration for publication in Superconductor Science and Technolog

    Quantum states made to measure

    Full text link
    Recent progress in manipulating quantum states of light and matter brings quantum-enhanced measurements closer to prospective applications. The current challenge is to make quantum metrologic strategies robust against imperfections.Comment: 4 pages, 3 figures, Commentary for Nature Photonic

    What if cancer survival in Britain were the same as in Europe: how many deaths are avoidable?

    Get PDF
    OBJECTIVE: To estimate the number of deaths among cancer patients diagnosed in Great Britain that would be avoidable within 5 years of diagnosis if the mean (or highest) survival in Europe for patients diagnosed during 1985-1989, 1990-1994 and 1995-1999 were achieved. DESIGN: Five-year relative survival for cancers in Great Britain compared with that from other countries in the EUROCARE-2, -3 and -4 studies. Calculation of excess deaths (those more than expected from mortality in the general population) that would be avoidable among cancer patients in Britain if relative survival were the same as in Europe. SETTING: Great Britain (England, Wales, Scotland) and 13 other European countries. SUBJECTS: 2.8 million adults diagnosed in Britain with 1 of 39 cancers during 1985-1989 (followed up to 1994), 1990-1994 (followed up to 1999) and 1995-1999 (followed up to 2003). MAIN OUTCOME MEASURE: Annual number of avoidable deaths within 5 years of diagnosis. Percentage of the excess (cancer-related) deaths among cancer patients that would be avoidable. RESULTS: Compared with the mean European 5-year relative survival, the largest numbers of avoidable deaths for patients diagnosed during 1985-1989 were for cancers of the breast (about 18% of the excess mortality from this cancer, 7541 deaths), prostate (14%, 4285), colon (9%, 4090), stomach (8%, 3483) and lung (2%, 3548). For 1990-1994, the largest numbers of avoidable deaths were for cancers of the prostate (20%, 7335), breast (15%, 6165), colon (9%, 4376), stomach (9%, 3672), lung (2%, 3735) and kidney (22%, 2644). For 1995-1999, most of the avoidable deaths were for cancers of the prostate (17%, 5758), breast (15%, 5475), lung (3%, 4923), colon (10%, 4295), stomach (9%, 3137) and kidney (21%, 2686).Overall, some 6600-7500 premature deaths would have been avoided each year among cancer patients diagnosed in Britain during 1985-1999 if the mean survival in Europe had been achieved. This represents 6-7% of cancer-related mortality. Compared with the highest European survival, avoidable premature mortality among cancer patients fell from about 12 800 deaths a year (12.2% of cancer-related mortality) to about 11 400 deaths a year (10.6%) over the same period.A large component of the avoidable mortality is due to prostate cancer: excluding this cancer from comparison with the European mean survival reduces the annual number of avoidable deaths by 1000-1500, and the percentage of excess mortality by up to 1%. Compared with the highest survival, the annual number of avoidable deaths would be 1500-2000 fewer, and 1-2% lower as a percentage of excess mortality, but the overall trend in avoidable premature mortality among cancer patients would be similar, falling from 11.4% (1985-1989) to 10.3% (1990-1994) and 9.7% for those diagnosed during 1995-1999.For several cancers, survival in Britain was slightly higher than the mean survival in Europe; this represented some 110-180 premature deaths avoided each year during the period 1985-2003. CONCLUSIONS: Avoidable premature mortality among cancer patients diagnosed in Britain during 1985-1999 has represented 6-7% of cancer-related mortality compared with the mean survival in Europe. Compared with the highest levels of survival in Europe, the reduction from 12.2% to 10.6% of cancer-related mortality reflects small but steady progress over the period 1985-2003

    Semer les chênes méditerranéens (Quercus ilex, Quercus pubescens) : pourquoi, comment et avec quelle réussite ?

    Get PDF
    Le semis de glands de chêne est une pratique très ancienne en région méditerranéenne qui a été largement délaissée au profit de la plantation. Dans cet article, nous proposons de faire le point sur cette technique et de la revisiter à la lumière des récentes expérimentations qui ont été conduites plus particulièrement dans le sud-est de la France et le nord de l’Espagne. Nous décrivons tout d’abord les bénéfices et les inconvénients du semis par rapport à la plantation. Puis, les principes de base de la récolte, du tri et de la conservation des glands sont exposés. Après avoir rappelé les conditions d’installation sur le terrain, nous analysons ensuite la réussite du semis en fonction des conditions de prédation par la faune sauvage (rongeurs, herbivores, sangliers) et des moyens mis en œuvre pour s’en prémunir. Enfin, nous précisons l’influence des milieux sur la réussite du semis et le rôle joué par la végétation ou les objets « nurse ». Pour conclure, nous soulignons l’intérêt que représente cette technique pour la restauration des milieux et l’amélioration de leur résilience

    Atom chip based generation of entanglement for quantum metrology

    Full text link
    Atom chips provide a versatile `quantum laboratory on a microchip' for experiments with ultracold atomic gases. They have been used in experiments on diverse topics such as low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. A severe limitation of atom chips, however, is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations, quantum information processing, and quantum metrology. Here we report experiments where we generate multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential. We employ this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate and show that they are useful for quantum metrology. The observed 3.7 dB reduction in spin noise combined with the spin coherence imply four-partite entanglement between the condensate atoms and could be used to improve an interferometric measurement by 2.5 dB over the standard quantum limit. Our data show good agreement with a dynamical multi-mode simulation and allow us to reconstruct the Wigner function of the spin-squeezed condensate. The techniques demonstrated here could be directly applied in chip-based atomic clocks which are currently being set up
    corecore