660 research outputs found

    The cylindrical Fourier transform

    Get PDF
    In this paper we devise a so-called cylindrical Fourier transform within the Clifford analysis context. The idea is the following: for a fixed vector in the image space the level surfaces of the traditional Fourier kernel are planes perpendicular to that fixed vector. For this Fourier kernel we now substitute a new Clifford-Fourier kernel such that, again for a fixed vector in the image space, its phase is constant on co-axial cylinders w.r.t. that fixed vector. The point is that when restricting to dimension two this new cylindrical Fourier transform coincides with the earlier introduced Clifford-Fourier transform.We are now faced with the following situation: in dimension greater than two we have a first Clifford-Fourier transform with elegant properties but no kernel in closed form, and a second cylindrical one with a kernel in closed form but more complicated calculation formulae. In dimension two both transforms coincide. The paper concludes with the calculation of the cylindrical Fourier spectrum of an L2-basis consisting of generalized Clifford-Hermite functions

    Solar feature tracking in both spatial and temporal domains

    Get PDF
    A new method for automated coronal loop tracking, in both spatial and temporal domains, is presented. The reliability of this technique was tested with TRACE 171A observations. The application of this technique to a flare-induced kink-mode oscillation, revealed a 3500 km spatial periodicity which occur along the loop edge. We establish a reduction in oscillatory power, for these spatial periodicities, of 45% over a 322 s interval. We relate the reduction in oscillatory power to the physical damping of these loop-top oscillations

    Time correlations in a confined magnetized free-electron gas

    Full text link
    The time-dependent pair correlation functions for a degenerate ideal quantum gas of charged particles in a uniform magnetic field are studied on the basis of equilibrium statistics. In particular, the influence of a flat hard wall on the correlations is investigated, both for a perpendicular and a parallel orientation of the wall with respect to the field. The coherent and incoherent parts of the time-dependent structure function in position space are determined from an expansion in terms of the eigenfunctions of the one-particle Hamiltonian. For the bulk of the system, the intermediate scattering function and the dynamical structure factor are derived by taking successive Fourier transforms. In the vicinity of the wall the time-dependent coherent structure function is found to decay faster than in the bulk. For coinciding positions near the wall the form of the structure function turns out to be independent of the orientation of the wall. Numerical results are shown to corroborate these findings.Comment: 25 pages, 14 figures, to be published in Journal of Physics

    Orthosymplectically invariant functions in superspace

    Get PDF
    The notion of spherically symmetric superfunctions as functions invariant under the orthosymplectic group is introduced. This leads to dimensional reduction theorems for differentiation and integration in superspace. These spherically symmetric functions can be used to solve orthosymplectically invariant Schroedinger equations in superspace, such as the (an)harmonic oscillator or the Kepler problem. Finally the obtained machinery is used to prove the Funk-Hecke theorem and Bochner's relations in superspace.Comment: J. Math. Phy

    Transformations of Heun's equation and its integral relations

    Full text link
    We find transformations of variables which preserve the form of the equation for the kernels of integral relations among solutions of the Heun equation. These transformations lead to new kernels for the Heun equation, given by single hypergeometric functions (Lambe-Ward-type kernels) and by products of two hypergeometric functions (Erd\'elyi-type). Such kernels, by a limiting process, also afford new kernels for the confluent Heun equation.Comment: This version was published in J. Phys. A: Math. Theor. 44 (2011) 07520

    The Absence of Positive Energy Bound States for a Class of Nonlocal Potentials

    Full text link
    We generalize in this paper a theorem of Titchmarsh for the positivity of Fourier sine integrals. We apply then the theorem to derive simple conditions for the absence of positive energy bound states (bound states embedded in the continuum) for the radial Schr\"odinger equation with nonlocal potentials which are superposition of a local potential and separable potentials.Comment: 23 page

    Parity-dependent squeezing of light

    Get PDF
    A parity-dependent squeezing operator is introduced which imposes different SU(1,1) rotations on the even and odd subspaces of the harmonic oscillator Hilbert space. This operator is used to define parity-dependent squeezed states which exhibit highly nonclassical properties such as strong antibunching, quadrature squeezing, strong oscillations in the photon-number distribution, etc. In contrast to the usual squeezed states whose QQ and Wigner functions are simply Gaussians, the parity-dependent squeezed states have much more complicated QQ and Wigner functions that exhibit an interesting interference in phase space. The generation of these states by parity-dependent quadratic Hamiltonians is also discussed.Comment: accepted for publication in J. Phys. A, LaTeX, 11 pages, 12 figures (compressed PostScript, available at http://www.technion.ac.il/~brif/graphics/pdss_graph ). More information on http://www.technion.ac.il/~brif/science.htm

    The two-dimensional two-component plasma plus background on a sphere : Exact results

    Full text link
    An exact solution is given for a two-dimensional model of a Coulomb gas, more general than the previously solved ones. The system is made of a uniformly charged background, positive particles, and negative particles, on the surface of a sphere. At the special value Γ=2\Gamma = 2 of the reduced inverse temperature, the classical equilibrium statistical mechanics is worked out~: the correlations and the grand potential are calculated. The thermodynamic limit is taken, and as it is approached the grand potential exhibits a finite-size correction of the expected universal form.Comment: 23 pages, Plain Te
    corecore