421 research outputs found

    Atomic defects and dopants in ternary Z-phase transition-metal nitrides CrMN with M=V, Nb, Ta investigated with density functional theory

    Full text link
    A density functional theory study of atomic defects and dopants in ternary Z-phase transition-metal nitrides CrMN with M=V, Nb, or Ta is presented. Various defect formation energies of native point defects and of substitutional atoms of other metal elements which are abundant in the steel as well, are evaluated. The dependence thereof on the thermodynamic environment, i.e. the chemical conditions of a growing Z-phase precipitate, is studied and different growth scenarios are compared. The results obtained may help to relate results of experimental atomic-scale analysis, by atom probe tomography or transmission electron microscopy, to the theoretical modeling of the formation process of the Z phase from binary transition metal nitrides

    Compositional optimization of hard-magnetic phases with machine-learning models

    Full text link
    Machine Learning (ML) plays an increasingly important role in the discovery and design of new materials. In this paper, we demonstrate the potential of ML for materials research using hard-magnetic phases as an illustrative case. We build kernel-based ML models to predict optimal chemical compositions for new permanent magnets, which are key components in many green-energy technologies. The magnetic-property data used for training and testing the ML models are obtained from a combinatorial high-throughput screening based on density-functional theory calculations. Our straightforward choice of describing the different configurations enables the subsequent use of the ML models for compositional optimization and thereby the prediction of promising substitutes of state-of-the-art magnetic materials like Nd2_2Fe14_{14}B with similar intrinsic hard-magnetic properties but a lower amount of critical rare-earth elements.Comment: 12 pages, 6 figure

    First-principles analysis of the interplay between electronic structure and volume change in colquiriite compounds during Li intercalation

    Full text link
    A main source of capacity fading in lithium-ion batteries is the degradation of the active cathode materials caused by the series of volume changes during charge and discharge cycles. The quaternary colquiriite-type fluorides Lix_xCaFeF6\mathrm{_6} and Lix_xCaCoF6\mathrm{_6} were reported to have negligible volume changes in specific Li concentration ranges, making the underlying colquiriite structure a promising candidate for so-called zero-strain behavior. Using first-principles electronic structure calculations based on density functional theory with a Hubbard-UU correlation correction on the transition-metal ions, we systematically investigate the equilibrium volumes of the colquiriite-type fluorides Lix_xCaMF6\mathrm{_6} with M =Ti, V, Cr, Mn, Fe, Co, and Ni at the Li concentrations xx=0, 1, and 2. We elucidate the connection between the total volume of the structures and the local volumes of fluorine coordinated octahedra around the cations, and we find trends along the series of the 3d transition-metal elements. In the lithiation step from xx=1 to xx=2 we find volume changes of about 10 %, and we discuss the discrepancy to the experimentally reported smaller value for Lix_xCaFeF6\mathrm{_6}. From xx=0 to xx=1 we describe the compensating structural mechanisms that lead to an exceptionally small volume change of Lix_xCaMnF6\mathrm{_6}. This compound is therefore a particularly promising zero-strain cathode material.Comment: 13 pages, 9 Figure

    Electronic correlations in vanadium chalcogenides: BaVSe3 versus BaVS3

    Full text link
    Albeit structurally and electronically very similar, at low temperature the quasi-one-dimensional vanadium sulfide BaVS3 shows a metal-to-insulator transition via the appearance of a charge-density-wave state, while BaVSe3 apparently remains metallic down to zero temperature. This different behavior upon cooling is studied by means of density functional theory and its combination with the dynamical mean-field theory and the rotationally-invariant slave-boson method. We reveal several subtle differences between these chalcogenides that provide indications for the deviant behavior of BaVSe3 at low temperature. In this regard, a smaller Hubbard U in line with an increased relevance of the Hund's exchange J plays a vital role.Comment: 16 pages, 11 figures, published versio

    Electrostatic treatment of charged interfaces in classical atomistic simulations

    Get PDF
    Artificial electrostatic potentials can be present in supercells constructed for atomistic simulations of surfaces and interfaces in ionic crystals. Treating the ions as point charges, we systematically derive an electrostatic formalism for model systems of increasing complexity, both neutral and charged, and with either open or periodic boundary conditions. This allows to correctly interpret results of classical atomistic simulations which are directly affected by the appearance of these potentials. We demonstrate our approach at the example of a strontium titanite supercell containing an asymmetric tilt grain boundary. The formation energies of charged oxygen vacancies and the relaxed interface structure are calculated based on an interatomic rigid-ion potential, and the results are analyzed in consideration of the electrostatic effects

    Interplay of charge-transfer and Mott-Hubbard physics approached by an efficient combination of self-interaction correction and dynamical mean-field theory

    Full text link
    Late transition-metal oxides with small charge-transfer energy Δ\Delta raise issues for state-of-the-art correlated electronic structure schemes such as the combination of density functional theory (DFT) with dynamical mean-field theory (DMFT). The accentuated role of the oxygen valence orbitals in these compounds asks for an enhanced description of ligand-based correlations. Utilizing the rocksalt-like NiO as an example, we present an advancement of charge self-consistent DFT+DMFT by including self-interaction correction (SIC) applied to oxygen. This introduces explicit onsite O correlations as well as an improved treatment of intersite pdp-d correlations. Due to the efficient SIC incorporation in a pseudopotential form, the DFT+sicDMFT framework is an advanced but still versatile method to address the interplay of charge-transfer and Mott-Hubbard physics. We revisit the spectral features of stoichiometric NiO and reveal the qualitative sufficiency of local DMFT self-energies in describing spectral peak structures usually associated with explicit nonlocal processes. For Lix_xNi1x_{1-x}O, prominent in-gap states are verified by the present theoretical study.Comment: 8 pages, 6 figure
    corecore