First-principles analysis of the interplay between electronic structure and volume change in colquiriite compounds during Li intercalation

Abstract

A main source of capacity fading in lithium-ion batteries is the degradation of the active cathode materials caused by the series of volume changes during charge and discharge cycles. The quaternary colquiriite-type fluorides Lix_xCaFeF6\mathrm{_6} and Lix_xCaCoF6\mathrm{_6} were reported to have negligible volume changes in specific Li concentration ranges, making the underlying colquiriite structure a promising candidate for so-called zero-strain behavior. Using first-principles electronic structure calculations based on density functional theory with a Hubbard-UU correlation correction on the transition-metal ions, we systematically investigate the equilibrium volumes of the colquiriite-type fluorides Lix_xCaMF6\mathrm{_6} with M =Ti, V, Cr, Mn, Fe, Co, and Ni at the Li concentrations xx=0, 1, and 2. We elucidate the connection between the total volume of the structures and the local volumes of fluorine coordinated octahedra around the cations, and we find trends along the series of the 3d transition-metal elements. In the lithiation step from xx=1 to xx=2 we find volume changes of about 10 %, and we discuss the discrepancy to the experimentally reported smaller value for Lix_xCaFeF6\mathrm{_6}. From xx=0 to xx=1 we describe the compensating structural mechanisms that lead to an exceptionally small volume change of Lix_xCaMnF6\mathrm{_6}. This compound is therefore a particularly promising zero-strain cathode material.Comment: 13 pages, 9 Figure

    Similar works

    Full text

    thumbnail-image

    Available Versions