37 research outputs found

    Botanical and Genetic Identification Followed by Investigation of Chemical Composition and Biological Activities on the Scabiosa atropurpurea L. Stem from Tunisian Flora

    Get PDF
    Scarce information about the phenolic composition of Scabiosa atropurpurea L. is available, and no carotenoid compounds have been reported thus far. In this study the phenolic and carotenoid composition of this plant was both investigated and associated bioactivities were evaluated. Aiming to obtain extracts and volatile fractions of known medicinal plants to valorize them in the pharmaceutical or food industries, two techniques of extraction and five solvents were used to determine the biologically active compounds. Gas chromatography coupled to flame ionization and mass spectrometry and liquid chromatography coupled to photodiode array and atmospheric pressure chemical ionization/electrospray ionization mass spectrometry highlighted the presence of 15 volatiles, 19 phenolic, and 24 natural pigments in Scabiosa atropurpurea L. stem samples; among them, the most abundant were 1,8-cineole, chlorogenic acid, cynaroside, and lutein. Bioactivity was assessed by a set of in vitro tests checking for antioxidant, antibacterial, antifungal, and allelopathic (against Brassica oleracea L. and Lens culinaris Medik) effects. Scabiosa atropurpurea L. stem extracts presented a considerable antioxidant, antibacterial, and allelopathic potential, with less antifungal effectiveness. These results indicate that the volatile fractions and extracts from S. atropurpurea L. stem could be considered as a good source of bioactive agents, with possible applications in food-related, agriculture, and pharmaceutical fields. Genetic investigations showed 97% of similarity with Scabiosa tschiliensis, also called Japanese Scabiosa

    Phytochemical constituents, antioxidant activity, and toxicity assessment of the aerial part extracts from the infraspecific taxa of Matthiola fruticulosa (Brassicaceae) endemic to Sicily

    Get PDF
    In a project designed to investigate the specific and infraspecific taxa of Matthiola endemic to Sicily (Italy) as new potential sources of bioactive compounds in this work, the infraspecific taxa of Matthiola fruticulosa were studied, namely, subsp. fruticulosa and subsp. coronopifolia. HPLC-PDA/ESI-MS and SPME-GC/MS analyses of hydroalcoholic extracts obtained from the aerial parts of the two subspecies led to the detection of 51 phenolics and 61 volatile components, highlighting a quite different qualitative-quantitative profile. The antioxidant properties of the extracts were explored through in vitro methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH), reducing power and Fe2+ chelating activity assays. The results of the antioxidant tests showed that the extracts possess a different antioxidant ability: Particularly, the extract of M. fruticulosa subsp. fruticulosa exhibited higher radical scavenging activity than that of subsp. coronopifolia (IC50 = 1.25 ± 0.02 mg/mL and 2.86 ± 0.05 mg/mL), which in turn displayed better chelating properties (IC50 = 1.49 ± 0.01 mg/mL and 0.63 ± 0.01 mg/mL). Lastly, Artemia salina lethality bioassay was performed for toxicity assessment. The results of the bioassay showed lack of toxicity against brine shrimp larvae for both extracts. The data presented indicate the infraspecific taxa of M. fruticulosa as new and safe sources of antioxidant compounds

    Zn treatment effects on biological potential of fennel bulbs as affected by in vitro digestion process

    Get PDF
    Zn treatment effects on the stability of polyphenols, MDA (malondialdehyde) content, antioxidant and lipoxygenase inhibition activities of two varieties of fennel bulbs were studied by using an in vitro gastrointestinal digestion model. Likewise, the effect of Zn on viability cells of E. coli was also performed. The results revealed that high amounts of total phenolic and flavonoid compounds were released during the digestion process, especially after the intestinal phase. Additionally, the antioxidant and lipoxygenase inhibitory activity were affected by the gastrointestinal digestion process and seems to be correlated with total phenol contents. On the other hand, the viability of E. coli was not affected by the activity of our tested bulbs during passage through the artificial digestion model, but the treated bulbs activity contribute relatively to the inhibition growth of bacteria. The survival of E. coli in fennel bulbs was challenged with simulated gastrointestinal fluids and the results showed that the E. coli strains, despite having experienced a viability reduction at the intestinal phase, were able to overcome the exposure to the gastrointestinal synthetic fluids. This E. coli ability reinforces the need for good hygienic measures to assure safe fresh produce, even for those that are rich in antibacterial compounds.info:eu-repo/semantics/publishedVersio

    Iodine-125 brachytherapy for brain tumours - a review

    Get PDF
    Iodine-125 brachytherapy has been applied to brain tumours since 1979. Even though the physical and biological characteristics make these implants particularly attractive for minimal invasive treatment, the place for stereotactic brachytherapy is still poorly defined
    corecore