32 research outputs found

    Fast wide-volume functional imaging of engineered in vitro brain tissues

    Get PDF
    The need for in vitro models that mimic the human brain to replace animal testing and allow high-throughput screening has driven scientists to develop new tools that reproduce tissue-like features on a chip. Three-dimensional (3D) in vitro cultures are emerging as an unmatched platform that preserves the complexity of cell-to-cell connections within a tissue, improves cell survival, and boosts neuronal differentiation. In this context, new and flexible imaging approaches are required to monitor the functional states of 3D networks. Herein, we propose an experimental model based on 3D neuronal networks in an alginate hydrogel, a tunable wide-volume imaging approach, and an efficient denoising algorithm to resolve, down to single cell resolution, the 3D activity of hundreds of neurons expressing the calcium sensor GCaMP6s. Furthermore, we implemented a 3D co-culture system mimicking the contiguous interfaces of distinct brain tissues such as the cortical-hippocampal interface. The analysis of the network activity of single and layered neuronal co-cultures revealed cell-type-specific activities and an organization of neuronal subpopulations that changed in the two culture configurations. Overall, our experimental platform represents a simple, powerful and cost-effective platform for developing and monitoring living 3D layered brain tissue on chip structures with high resolution and high throughput

    Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF

    Get PDF
    Mesenchymal stem cells (MSCs) have been used for cell-based therapies in regenerative medicine, with increasing importance in central and peripheral nervous system repair. However, MSCs grafting present disadvantages, such as, a high number of cells required for transplantation and low survival rate when transplanted into the central nervous system (CNS). In line with this, MSCs secretome which present on its composition a wide range of molecules (neurotrophins, cytokines) and microvesicles, can be a solution to surpass these problems. However, the effect of MSCs secretome in axonal elongation is poorly understood. In this study, we demonstrate that application of MSCs secretome to both rat cortical and hippocampal neurons induces an increase in axonal length. In addition, we show that this growth effect is axonal intrinsic with no contribution from the cell body. To further understand which are the molecules required for secretome-induced axonal outgrowth effect, we depleted brain-derived neurotrophic factor (BDNF) from the secretome. Our results show that in the absence of BDNF, secretome-induced axonal elongation effect is lost and that axons present a reduced axonal growth rate. Altogether, our results demonstrate that MSCs secretome is able to promote axonal outgrowth in CNS neurons and this effect is mediated by BDNF.European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme under project CENTRO-01–0145-FEDER-000008:BrainHealth 2020, and through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation and Portuguese national funds via FCT – Fundação para a Ciência e a Tecnologia, I.P., under projects PTDC/SAU-NEU/104100/2008, EXPL/NEU-NMC/0541/2012 and UID/NEU/04539/2013. This work was also funded by Marie Curie Actions - International reintegration grant #249288, 7th Framework programme, EU. Partially funded by Prémios Santa Casa Neurociências - Prize Melo e Castro for Spinal Cord Injury Research; Portuguese Foundation for Science and Technology (IF Development Grant to A.J.S.); NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme; by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by national funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038. The authors would also like to acknowledge Prof. J.E. Davies from the Institute of Biomaterials and Biomedical Engineering at the University of Toronto, Canada, for kindly providing some of the HUCPVCs lots used in the present workinfo:eu-repo/semantics/publishedVersio

    Assembling Neurospheres: Dynamics of Neural Progenitor/Stem Cell Aggregation Probed Using an Optical Trap

    Get PDF
    Optical trapping (tweezing) has been used in conjunction with fluid flow technology to dissect the mechanics and spatio-temporal dynamics of how neural progenitor/stem cells (NSCs) adhere and aggregate. Hitherto unavailable information has been obtained on the most probable minimum time (∼5 s) and most probable minimum distance of approach (4–6 µm) required for irreversible adhesion of proximate cells to occur. Our experiments also allow us to study and quantify the spatial characteristics of filopodial- and membrane-mediated adhesion, and to probe the functional dynamics of NSCs to quantify a lower limit of the adhesive force by which NSCs aggregate (∼18 pN). Our findings, which we also validate by computational modeling, have important implications for the neurosphere assay: once aggregated, neurospheres cannot disassemble merely by being subjected to shaking or by thermal effects. Our findings provide quantitative affirmation to the notion that the neurosphere assay may not be a valid measure of clonality and “stemness”. Post-adhesion dynamics were also studied and oscillatory motion in filopodia-mediated adhesion was observed. Furthermore, we have also explored the effect of the removal of calcium ions: both filopodia-mediated as well as membrane-membrane adhesion were inhibited. On the other hand, F-actin disrupted the dynamics of such adhesion events such that filopodia-mediated adhesion was inhibited but not membrane-membrane adhesion

    Atomic and photonic force microscope: From nano-Newton to pico-Newton

    No full text

    Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks

    No full text
    none4noneF. Difato;L. Schibalsky;F. Benfenati;A. BlauF., Difato; L., Schibalsky; Benfenati, Fabio; A., Bla

    Measurement of tension release during laser induced axon lesion to evaluate axonal adhesion to the substrate at piconewton and millisecond resolution

    No full text
    The formation of functional connections in a developing neuronal network is influenced by extrinsic cues. The neurite growth of developing neurons is subject to chemical and mechanical signals, and the mechanisms by which it senses and responds to mechanical signals are poorly understood. Elucidating the role of forces in cell maturation will enable the design of scaffolds that can promote cell adhesion and cytoskeletal coupling to the substrate, and therefore improve the capacity of different neuronal types to regenerate after injury. Here, we describe a method to apply simultaneous force spectroscopy measurements during laser induced cell lesion. We measure tension release in the partially lesioned axon by simultaneous interferometric tracking of an optically trapped probe adhered to the membrane of the axon. Our experimental protocol detects the tension release with piconewton sensitivity, and the dynamic of the tension release at millisecond time resolution. Therefore, it offers a high-resolution method to study how the mechanical coupling between cells and substrates can be modulated by pharmacological treatment and/or by distinct mechanical properties of the substrate

    Two-photon fluorescence excitation within a light sheet based microscopy architecture

    No full text
    Light-sheet microscopy, such as ultramicroscopy, single plane illumination microscopy (SPIM) [1] and digital scanned laser microscopy (DSLM) [2], represents a useful tool for biological investigations of thick samples. Such techniques have been found particularly useful in developmental biology applications since they provide the capability to perform fast imaging of living samples reducing photobleaching effects. The high signal to noise ratio and the intrinsic optical sectioning capability provided by SPIM suggest this technique as the best choice for imaging of thick scattering samples. Nevertheless, imaging in depth of large samples suffers from a decreasing in the image quality due to scattering effects. Two photon excitation microscopy [3] became a popular tool to perform imaging in turbid media since it improves the penetration depth capability and it reduces the image quality degradation due to scattering [4] and light matter interactions. Therefore, two photon excitation within the light sheet illumination scheme has been exploited in order to reduce scattering effects due to light-sample interactions. In this work two photon excitation imaging in SPIM scheme has been performed in order to achieve an improvement in the penetration depth while imaging living biological samples. © 2011 SPIE

    Long-range and long-term interferometric tracking by static and dynamic force-clamp optical tweezers

    No full text
    Optical tweezers are recognized single-molecule technique to resolve forces and motion on the molecular scale. Complex biological phenomena, such as cell differentiation and locomotion, require long range tracking capabilities with nanometer resolution over an extended period, to resolve molecular processes on the cellular scale. Here we introduce a real-time control of the microscope stage position to perform long-term tracking, with sub-millisecond resolution, of a bead attached to a neuron, preserving sub-nanometer sensitivity on a spatial range of centimeters, seven orders of magnitude larger. Moreover, the suitability of the system is tested by time- modulating the force-clamp condition to study the role of statically and dynamically applied forces in neuronal differentiation
    corecore