29 research outputs found

    Influence of time, temperature, confining pressure and fluid content on the experimental compaction of spherical grains

    Get PDF
    Theoretical models of compaction processes, such as for example intergranular pressure-solution (IPS), focus on deformation occurring at the contacts between spherical grains that constitute an aggregate. In order to investigate the applicability of such models, and to quantify the deformation of particles within an aggregate, isostatic experiments were performed in cold-sealed vessels on glass sphere aggregates at 200 MPa confining pressure and 350 degrees C with varying amounts of fluid

    Shale disposal of U.S. high-level radioactive waste.

    Full text link
    Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy

    Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    Get PDF
    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes

    Enhanced deformation of limestone and sandstone in the presence of high pCO2 fluids

    Get PDF
    International audienceGeological repositories subject to the injection of large amounts of anthropogenic carbon dioxide will undergo chemical and mechanical instabilities for which there are currently little experimental data. This study reports on experiments where low and high pCO2 (8~MPa) aqueous fluids where injected into natural rock samples. The experiments were performed in flow-through triaxial cells, where the vertical and confining stresses, temperature, and pressure and composition of the fluid were separately controlled and monitored. The axial vertical strains of two limestones and one sandstone were continuously measured during separate experiments for several months, with a strain rate resolution of 10^-11 s-1. Fluids exiting the triaxial cells where continuously collected and their compositions analysed. The high pCO2 fluids induced an increase in strain rates of the limestones by up to a factor of 5, compared to the low pCO2 fluids. Injection of high pCO2 fluids into the sandstone resulted in deformation rates one order of magnitude smaller than the limestones. The creep accelerating effect of high pCO2 fluids with respect to the limestones was mainly due to the acidification of the injected fluids, resulting in a significant increase in solubility and reaction kinetics of calcite. Compared to the limestones, the much weaker response of the sandstone was due to the much lower solubility and reactivity of quartz in high pCO2 fluids. In general, all samples showed a positive correlation between fluid flow rate and strain rate. X-ray tomography results revealed significant increases in porosity at the inlet portion of each core; the porosity increases were dependent on the original lithological structure and composition. The overall deformation of the samples is interpreted in terms of simultaneous dissolution reactions in pore spaces and intergranular pressure solution creep

    Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Get PDF
    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers

    Quantitative basin modeling: present state and future developments towards predictability

    No full text
    A critique review of the state of quantitative basin modeling is presented. Over the last 15 years, a number of models are proposed to advance our understanding of basin evolution. However, as of present, most basin models are two dimensional (2-D) and subject to significant simplifications such as depth- or effective stress-dependent porosity, no stress calculations, isotropic fracture permeability, etc. In this paper, promising areas for future development are identified. The use of extensive data sets to calibrate basin models requires a comprehensive reaction, transport, mechanical (RTM) model in order to generate the synthetic response. An automated approach to integrate comprehensive basin modeling and seismic, well-log and other type of data is suggested. The approach takes advantage of comprehensive RTM basin modeling to complete an algorithm based on information theory that places basin modeling on a rigorous foundation. Incompleteness in a model can self-consistently be compensated for by an increase in the amount of observed data used. The method can be used to calibrate the transport, mechanical, or other laws underlying the model. As the procedure is fully automated, the predictions can be continuously updated as new observed data become available. Finally, the procedure makes it possible to augment the model itself as new processes are added in a way that is dictated by the available data. In summary, the automated data/model integration places basin simulation in a novel context of informatics that allows for data to be used to minimize and assess risk in the prediction of reservoir location and characteristics
    corecore