14 research outputs found

    Solving spin quantum-master equations with matrix continued-fraction methods: application to superparamagnets

    Full text link
    We implement continued-fraction techniques to solve exactly quantum master equations for a spin with arbitrary S coupled to a (bosonic) thermal bath. The full spin density matrix is obtained, so that along with relaxation and thermoactivation, coherent dynamics is included (precession, tunnel, etc.). The method is applied to study isotropic spins and spins in a bistable anisotropy potential (superparamagnets). We present examples of static response, the dynamical susceptibility including the contribution of the different relaxation modes, and of spin resonance in transverse fields.Comment: Resubmitted to J. Phys. A: Math. Gen. Some rewriting here and there. Discussion on positivity in App.D3 at request of one refere

    Osteochondritis dissecans and Osgood Schlatter disease in a family with Stickler syndrome

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Stickler syndrome is among the most common autosomal dominant connective tissue disorders but is often unrecognised and therefore not diagnosed by clinicians. Despite much speculation, the cause of osteochondrosis in general and osteochondritis dissecans (OCD) and Osgood Schlatter syndrome (OSS) in particular remain unclear. Etiological understanding is essential. We describe a pair of family subjects presented with OCD and OSS as a symptom complex rather than a diagnosis.</p> <p>Methods</p> <p>Detailed clinical and radiographic examinations were undertaken with emphasis on the role of MRI imaging. Magnetic resonance imaging may allow early prediction of articular lesion healing potential in patients with Stickler syndrome.</p> <p>Results</p> <p>The phenotype of Stickler syndrome can be diverse and therefore misleading. The expectation that the full clinical criteria of any given genetic disorder such as Stickler syndrome will always be present can easily lead to an underestimation of these serious inheritable disorders. We report here two family subjects, a male proband and his aunt (paternal sister), both presented with the major features of Stickler syndrome. Tall stature with marfanoid habitus, astigmatism/congenital vitreous abnormality and submucus cleft palate/cleft uvula, and enlarged painful joints with early onset osteoarthritis. Osteochondritis dissecans (OCD) and Osgood Schlatter syndrome (OSS) were the predominating joint abnormalities.</p> <p>Conclusion</p> <p>We observed that the nature of the articular and physeal abnormalities was consistent with a localised manifestation of a more generalised epiphyseal dysplasia affecting the weight-bearing joints. In these two patients, OCD and OSS appeared to be the predominant pathologic musculoskeletal consequences of an underlying Stickler's syndrome. It is empirical to consider generalised epiphyseal dysplasia as a major underlying causation that might drastically affect the weight-bearing joints.</p

    Escape from X inactivation of two new genes associated with DXS6974E and DXS7020E

    No full text
    Most genes on the X chromosome undergo ''inactivation,'' being transcribed from only one copy in female somatic cells, but several human genes have been shown to be expressed from both the active and the otherwise inactivated homologue. To assess further the fraction and location of genes that escape inactivation, we have analyzed the inactivation status of a set of 73 expressed sequence tags that were derived from the sequencing of cDNA collections and mapped to the X chromosome. Of 33 that were expressed in cultured cells, as assessed by reverse transcription and PCR, 4 (about 12%) were transcribed from both the active and the inactive X chromosome, Two, RPS4 and PCTAIRE1, are already known to escape inactivation; the other 2, of unknown function, include a short cDNA with a full open reading frame and a transcript with no detectable open reading frame. They map, respectively, to Xp11.3-p11.4 and Xp22.2; both regions were previously reported to encode sequences transcribed from the inactive X. Neither transcript has a corresponding sequence on the Y. Thus, they exhibit double dosage in females compared to males, and inactivation status may be inconsequential for these transcribed sequences. (C) 1997 Academic Press

    Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade

    Get PDF
    International audienceImpaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1–2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers

    DNMT3B mutations in ICF syndrome are associated to epigenetic alterations of microRNAs having targets involved in immune function.

    No full text
    Immunodeficiency, centromeric region instability, cacial anomalies (IcF; OMIM #242860) syndrome, due to mutations in the DNMT3B gene, is characterized by inheritance of aberrant patterns of DNa methylation and heterochromatin defects. patients show variable agammaglobulinemia and a reduced number of T cells, making them prone to infections and death before adulthood. Other variable symptoms include facial dysmorphism, growth and mental retardation. Despite the recent advances in identifying the dysregulated genes, the molecular mechanisms, which underlie the altered gene expression causing IcF phenotype complexity, are not well understood. held the recently-shown tight correlation between epigenetics and microRNas (miRNas), we searched for miRNas regulated by DNMT3B activity, comparing cell lines from IcF patients with those from healthy individuals. We observe that 89 miRNas, some of which involved in immune function, development and neurogenesis, are dysregulated in IcF (LcLs) compared to wild-type cells. significant DNa hypomethylation of miRNa cpG islands was not observed in cases of miRNa upregulation in IcF cells, suggesting a more subtle effect of DNMT3B deficiency on their regulation; however, a modification of histone marks, especially h3K27 and h3K4 trimethylation, and h4 acetylation, was observed concomitantly with changes in microRNa expression. Functional correlation between miRNa and mRNa expression of their targets allow us to suppose a regulation either at mRNa level or at protein level. These results provide a better understanding of how DNa methylation and histone code interact to regulate the class of microRNa genes and enable us to predict molecular events possibly contributing to IcF condition

    Mutation analysis of the MECP2 gene in British and Italian Rett syndrome females.

    No full text
    Rett syndrome is an X-linked dominant neurological disorder, which appears to be the commonest genetic cause of profound combined intellectual and physical disability in Caucasian females. Recently, this syndrome has been associated with mutations of the MECP2 gene, a transcriptional repressor of still unknown target genes. Here we report a detailed mutational analysis of 62 patients from UK and Italian archives, representing the first comparative study among different populations and one of the largest number of cases so far analyzed. We review the literature on MECP2 mutations in Rett syndrome. This analysis has permitted us to produce a map of the recurrent mutations identified in this and previous studies. Bioinformatic analysis of the mutations, taking advantage of structural and evolutionary data, leads us to postulate the existence of a new functional domain in the MeCP2 protein, which is conserved among brain-specific regulatory factors
    corecore