14,599 research outputs found

    Thermoelectric properties of Bi2Te3 atomic quintuple thin films

    Full text link
    Motivated by recent experimental realizations of quintuple atomic layer films of Bi2Te3,the thermoelectric figure of merit, ZT, of the quintuple layer is calculated and found to increase by a factor of 10 (ZT = 7.2) compared to that of the bulk at room temperature. The large enhancement in ZT results from the change in the distribution of the valence band density of modes brought about by the quantum confinement in the thin film. The theoretical model uses ab initio electronic structure calculations (VASP) with full quantum-mechanical structure relaxation combined with a Landauer formalism for the linear-response transport coefficients.Comment: 4 figures, submitted to AP

    Is there New Physics in B Decays ?

    Get PDF
    Rare decays of the BB meson are sensitive to new physics effects. Several experimental results on these decays have been difficult to understand within the standard model (SM) though more precise measurements and a better understanding of SM theory predictions are needed before any firm conclusions can be drawn. In this talk we try to understand the present data assuming the presence of new physics. We find that the data points to new physics of an extended Higgs sector and we present a two higgs doublet model with a 2-3 flavor symmetry in the down type quark sector that can explain the deviations from standard model reported in several rare B decays.Comment: 8 pages, Talk presented at Theory Canada II, Perimeter Institute, Waterloo, Canada. New references added and update

    Coherent Graphene Devices: Movable Mirrors, Buffers and Memories

    Full text link
    We theoretically report that, at a sharp electrostatic step potential in graphene, massless Dirac fermions can obtain Goos-H\"{a}nchen-like shifts under total internal reflection. Based on these results, we study the coherent propagation of the quasiparticles along a sharp graphene \emph{p-n-p} waveguide and derive novel dispersion relations for the guided modes. Consequently, coherent graphene devices (e.g. movable mirrors, buffers and memories) induced only by the electric field effect can be proposed.Comment: 12 pages, 5 figure

    Evaluating the Holevo Cramér-Rao bound for multiparameter quantum metrology

    Get PDF
    Only with the simultaneous estimation of multiple parameters are the quantum aspects of metrology fully revealed. This is due to the incompatibility of observables. The fundamental bound for multiparameter quantum estimation is the Holevo Cram´er-Rao bound (HCRB) whose evaluation has so far remained elusive. For finite-dimensional systems we recast its evaluation as a semidefinite program, with reduced size for rank-deficient states. We show that it also satisfies strong duality. We use this result to study phase and loss estimation in optical interferometry and three-dimensional magnetometry with noisy multiqubit systems. For the former, we show that, in some regimes, it is possible to attain the HCRB with the optimal (single-copy) measurement for phase estimation. For the latter, we show a nontrivial interplay between the HCRB and incompatibility and provide numerical evidence that projective single-copy measurements attain the HCRB in the noiseless 2-qubit case

    Sample-specific and Ensemble-averaged Magnetoconductance of Individual Single-Wall Carbon Nanotubes

    Full text link
    We discuss magnetotransport measurements on individual single-wall carbon nanotubes with low contact resistance, performed as a function of temperature and gate voltage. We find that the application of a magnetic field perpendicular to the tube axis results in a large magnetoconductance of the order of e^2/h at low temperature. We demonstrate that this magnetoconductance consists of a sample-specific and of an ensemble-averaged contribution, both of which decrease with increasing temperature. The observed behavior resembles very closely the behavior of more conventional multi-channel mesoscopic wires, exhibiting universal conductance fluctuations and weak localization. A theoretical analysis of our experiments will enable to reach a deeper understanding of phase-coherent one-dimensional electronic motion in SWNTs.Comment: Replaced with published version. Minor changes in tex

    Meson correlators above deconfinement

    Full text link
    We review recent progress in studying spectral functions for mesonic observables at finite temperatures, by analysis of imaginary time correlators directly calculated on isotropic lattices. Special attention is paid to the lattice artifacts present in such calculations.Comment: Latex, 3 figures uses iopart.cls, talk presented at Hot Quarks 2004, July 18-24, 2004, Taos Valley New Mexico, US

    On the Observability of "Invisible" / "Nearly Invisible" Charginos

    Get PDF
    It is shown that if the charginos decay into very soft leptons or hadrons + E̸\not{E} due to degeneracy/ near- degeneracy with the LSP or the sneutrino, the observability of the recently proposed signal via the single photon (+ soft particles) + E̸\not{E} channel crucially depends on the magnitude of the \SNU mass due to destructive interferences in the matrix element squared. If the \SNU's and, consequently, left-sleptons are relatively light, the size of the signal, previously computed in the limit \MSNU \to \infty only, is drastically reduced. We present the formula for the signal cross section in a model independent way and discuss the observability of the signal at LEP 192 and NLC energies.Comment: 27 pages, Late

    Charging induced asymmetry in molecular conductors

    Full text link
    We investigate the origin of asymmetry in various measured current-voltage (I-V) characteristics of molecules with no inherent spatial asymmetry, with particular focus on a recent break junction measurement. We argue that such asymmetry arises due to unequal coupling with the contacts and a consequent difference in charging effects, which can only be captured in a self-consistent model for molecular conduction. The direction of the asymmetry depends on the sign of the majority carriers in the molecule. For conduction through highest occupied molecular orbitals (i.e. HOMO or p-type conduction), the current is smaller for positive voltage on the stronger contact, while for conduction through lowest unoccupied molecular orbitals (i.e. LUMO or n-type conduction), the sense of the asymmetry is reversed. Within an extended Huckel description of the molecular chemistry and the contact microstructure (with two adjustable parameters, the position of the Fermi energy and the sulphur-gold bond length), an appropriate description of Poisson's equation, and a self-consistently coupled non-equilibrium Green's function (NEGF) description of transport, we achieve good agreement between theoretical and experimental I-V characteristics, both in shape as well as overall magnitude.Comment: length of the paper has been extended (4 pages to 6 pages), two new figures have been added (3 figures to 5 figures), has been accepted for PR

    Coolant side heat transfer with rotation. Task 3 report: Application of computational fluid dynamics

    Get PDF
    An experimental and analytical program was conducted to investigate heat transfer and pressure losses in rotating multipass passages with configurations and dimensions typical of modern turbine blades. The objective of this program is the development and verification of improved analysis methods that will form the basis for a design system that will produce turbine components with improved durability. As part of this overall program, a technique is developed for computational fluid dynamics. The specific objectives were to: select a baseline CFD computer code, assess the limitations of the baseline code, modify the baseline code for rotational effects, verify the modified code against benchmark experiments in the literature, and to identify shortcomings in the code as revealed by the verification. The Pratt and Whitney 3D-TEACH CFD code was selected as the vehicle for this program. The code was modified to account for rotating internal flows, and these modifications were evaluated for flow characteristics of those expected in the application. Results can make a useful contribution to blade internal cooling
    • …
    corecore