1,400 research outputs found
Editorial: Functional fitness/high intensity functional training for health and performance
Functional fitness training (FFT) is an emerging fitness trend that emphasizes functional, multi-joint movements, including aerobic (e.g., cycling, rowing, running) and strength exercises (e.g., weightlifting and derivatives: squat, snatch, clean and jerk, bench press, deadlift; bodyweight exercises: air squat, push-up, pull-up, muscle-up; plyometrics: box jumps, tuck ups) (Claudino et al., 2018; Feito et al., 2018). Researchers have shown that FFT may be not only suitable for professional athletes but also for populations with different fitness levels. Indeed, it is suggested that FFT elicits greater muscle recruitment than aerobic exercises alone, thereby improving both endurance and muscular strength and power (Bergeron et al., 2011; Claudino et al., 2018; Feito et al., 2018; Schlegel, 2020; Sharp et al., 2022). However, FFT units (i.e., workouts) are highly varied daily, and more research is needed to clarify its acute effects and its associated chronic training adaptations (Bergeron et al., 2011; Claudino et al., 2018; Feito et al., 2018; Schlegel, 2020; Sharp et al., 2022). Therefore, the aim of this Research Topic is to increase the knowledge of the evidence-based effects and adaptations of implementing FFT on health and performance in individuals with different biological conditions
Further progress in ion back-flow reduction with patterned gaseous hole-multipliers
A new idea on electrostatic deviation and capture of back-drifting
avalanche-ions in cascaded gaseous hole-multipliers is presented. It involves a
flipped reversed-bias Micro-Hole & Strip Plate (F-R-MHSP) element, the strips
of which are facing the drift region of the multiplier. The ions, originating
from successive multiplication stages, are efficiently deviated and captured by
such electrode. Experimental results are provided comparing the ion-blocking
capability of the F-R-MHSP to that of the reversed-bias Micro-Hole & Strip
Plate (R-MHSP) and the Gas Electron Multiplier (GEM). Best ion-blocking results
in cascaded hole-multipliers were reached with a detector having the F-R-MHSP
as the first multiplication element. A three-element F-R-MHSP/GEM/MHSP cascaded
multiplier operated in atmospheric-pressure Ar/CH4 (95/5), at total gain of
~10^{5}, yielded ion back-flow fractions of 3*10^{-4} and 1.5*10^{-4}, at drift
fields of 0.5 and 0.2 kV/cm, respectively. We describe the F-R-MHSP concept and
the relevance of the obtained ion back-flow fractions to various applications;
further ideas are also discussed.Comment: 17 pages, 11 figures, published in JINS
Meson Exchange Currents in (e,e'p) recoil polarization observables
A study of the effects of meson-exchange currents and isobar configurations
in reactions is presented. We use a distorted wave
impulse approximation (DWIA) model where final-state interactions are treated
through a phenomenological optical potential. The model includes relativistic
corrections in the kinematics and in the electromagnetic one- and two-body
currents. The full set of polarized response functions is analyzed, as well as
the transferred polarization asymmetry. Results are presented for proton
knock-out from closed-shell nuclei, for moderate to high momentum transfer.Comment: 44 pages, 18 figures. Added physical arguments explaining the
dominance of OB over MEC, and a summary of differences with previous MEC
calculations. To be published in PR
The Resistive-Plate WELL with Argon mixtures - a robust gaseous radiation detector
A thin single-element THGEM-based, Resistive-Plate WELL (RPWELL) detector was
operated with 150 GeV/c muon and pion beams in Ne/(5%CH), Ar/(5%CH) and
Ar/(7%CO); signals were recorded with 1 cm square pads and SRS/APV25
electronics. Detection efficiency values greater than 98% were reached in all
the gas mixtures, at average pad multiplicity of 1.2. The use of the
10{\Omega}cm resistive plate resulted in a completely discharge-free
operation also in intense pion beams. The efficiency remained essentially
constant at 98-99% up to fluxes of 10Hz/cm, dropping by a few %
when approaching 10 Hz/cm. These results pave the way towards
cost-effective, robust, efficient, large-scale detectors for a variety of
applications in future particle, astro-particle and applied fields. A potential
target application is digital hadron calorimetry.Comment: presented at the 2016 VIenna Conf. On instrumentation. Submitted to
the Conference proceeding
Effects of Short-Range Correlations in (e,e'p) reactions and nuclear overlap functions
A study of the effects of short-range correlations over the (e,e'p) reaction
for low missing energy in closed shell nuclei is presented. We use correlated,
quasi-hole overlap functions extracted from the asymptotic behavior of the
one-body density matrix, containing central correlations of Jastrow type, up to
first-order in a cluster expansion, and computed in the very high asymptotic
region, up to 100 fm. The method to extract the overlap functions is checked in
a simple shell model, where the exact results are known. We find that the
single-particle wave functions of the valence shells are shifted to the right
due to the short-range repulsion by the nuclear core. The corresponding
spectroscopic factors are reduced only a few percent with respect to the shell
model. However, the (e,e'p) response functions and cross sections are enhanced
in the region of the maximum of the missing momentum distribution due to
short-range correlations.Comment: 45 pages, 15 figure
Analytical evaluation of atomic form factors: application to Rayleigh scattering
Atomic form factors are widely used for the characterization of targets and
specimens, from crystallography to biology. By using recent mathematical
results, here we derive an analytical expression for the atomic form factor
within the independent particle model constructed from nonrelativistic screened
hydrogenic wavefunctions. The range of validity of this analytical expression
is checked by comparing the analytically obtained form factors with the ones
obtained within the Hartee-Fock method. As an example, we apply our analytical
expression for the atomic form factor to evaluate the differential cross
section for Rayleigh scattering off neutral atoms.Comment: 7 pages, 1 figur
Variation of the speed of light with temperature of the expanding universe
From an extended relativistic dynamics for a particle moving in a cosmic
background field with temperature T, we aim to obtain the speed of light with
an explicit dependence on the background temperature of the universe. Although
finding the speed of light in the early universe much larger than its current
value, our approach does not violate the postulate of special relativity.
Moreover, it is shown that the high value of the speed of light in the early
universe was drastically decreased before the beginning of the inflationary
period. So we are led to conclude that the theory of varying speed of light
should be questioned as a possible solution of the horizon problem.Comment: 3 pages and 1 figure; Phys. Rev. D86, 027703 (2012
First in-beam studies of a Resistive-Plate WELL gaseous multiplier
We present the results of the first in-beam studies of a medium size
(1010 cm) Resistive-Plate WELL (RPWELL): a single-sided THGEM
coupled to a pad anode through a resistive layer of high bulk resistivity
(10cm). The 6.2~mm thick (excluding readout electronics)
single-stage detector was studied with 150~GeV muons and pions. Signals were
recorded from 11 cm square copper pads with APV25-SRS readout
electronics. The single-element detector was operated in Ne\(5%
) at a gas gain of a few times 10, reaching 99
detection efficiency at average pad multiplicity of 1.2. Operation at
particle fluxes up to 10 Hz/cm resulted in 23 gain drop
leading to 5 efficiency loss. The striking feature was the
discharge-free operation, also in intense pion beams. These results pave the
way towards robust, efficient large-scale detectors for applications requiring
economic solutions at moderate spatial and energy resolutions.Comment: Accepted by JINS
Origin of Relativistic Effects in the Reaction D(e,e'p)n at GeV Energies
In a series of recent publications, a new approach to the non-relativistic
reduction of the electromagnetic current operator in calculations of
electro-nuclear reactions has been introduced. In one of these papers, the
conjecture that at energies of a few GeV, the bulk of the relativistic effects
comes from the current and not from the nuclear dynamics was made, based on the
large relativistic effects in the transverse-longitudinal response. Here, we
explicitly compare a fully relativistic, manifestly covariant calculation
performed with the Gross equation, with a calculation that uses a
non-relativistic wave function and a fully relativistic current operator. We
find very good agreement up to missing momenta of 400 MeV/c, thus confirming
the previous conjecture. We discuss slight deviations in cross sections for
higher missing momenta and their possible origin, namely p-wave contributions
and off-shell effects.Comment: 25 pages, 11 figure
Ground state correlations and mean-field in O: Part II
We continue the investigations of the O ground state using the
coupled-cluster expansion [] method with realistic nuclear
interaction. In this stage of the project, we take into account the three
nucleon interaction, and examine in some detail the definition of the internal
Hamiltonian, thus trying to correct for the center-of-mass motion. We show that
this may result in a better separation of the internal and center-of-mass
degrees of freedom in the many-body nuclear wave function. The resulting ground
state wave function is used to calculate the "theoretical" charge form factor
and charge density. Using the "theoretical" charge density, we generate the
charge form factor in the DWBA picture, which is then compared with the
available experimental data. The longitudinal response function in inclusive
electron scattering for O is also computed.Comment: 9 pages, 7 figure
- …