1,829 research outputs found

    Application of the Asymptotic Iteration Method to a Perturbed Coulomb Model

    Full text link
    We show that the asymptotic iteration method converges and yields accurate energies for a perturbed Coulomb model. We also discuss alternative perturbation approaches to that model.Comment: 9 pages, 2 figures, 1 tabl

    Conversion efficiency and luminosity for gamma-proton colliders based on the LHC-CLIC or LHC-ILC QCD Explorer scheme

    Get PDF
    Gamma-proton collisions allow unprecedented investigations of the low x and high Q2Q^{2} regions in quantum chromodynamics. In this paper, we investigate the luminosity for "ILC"×\timesLHC (sep=1.3\sqrt{s_{ep}}=1.3 TeV) and "CLIC"×\timesLHC (sep=1.45\sqrt{s_{ep}}=1.45 TeV) based γp\gamma p colliders. Also we determine the laser properties required for high conversion efficiency.Comment: 16, 6 figure

    Criterion for polynomial solutions to a class of linear differential equation of second order

    Full text link
    We consider the differential equations y''=\lambda_0(x)y'+s_0(x)y, where \lambda_0(x), s_0(x) are C^{\infty}-functions. We prove (i) if the differential equation, has a polynomial solution of degree n >0, then \delta_n=\lambda_n s_{n-1}-\lambda_{n-1}s_n=0, where \lambda_{n}= \lambda_{n-1}^\prime+s_{n-1}+\lambda_0\lambda_{n-1}\hbox{and}\quad s_{n}=s_{n-1}^\prime+s_0\lambda_{k-1},\quad n=1,2,.... Conversely (ii) if \lambda_n\lambda_{n-1}\ne 0 and \delta_n=0, then the differential equation has a polynomial solution of degree at most n. We show that the classical differential equations of Laguerre, Hermite, Legendre, Jacobi, Chebyshev (first and second kind), Gegenbauer, and the Hypergeometric type, etc, obey this criterion. Further, we find the polynomial solutions for the generalized Hermite, Laguerre, Legendre and Chebyshev differential equations.Comment: 12 page

    Arbitrary l-state solutions of the rotating Morse potential by the asymptotic iteration method

    Full text link
    For non-zero \ell values, we present an analytical solution of the radial Schr\"{o}dinger equation for the rotating Morse potential using the Pekeris approximation within the framework of the Asymptotic Iteration Method. The bound state energy eigenvalues and corresponding wave functions are obtained for a number of diatomic molecules and the results are compared with the findings of the super-symmetry, the hypervirial perturbation, the Nikiforov-Uvarov, the variational, the shifted 1/N and the modified shifted 1/N expansion methods.Comment: 15 pages with 1 eps figure. accepted for publication in Journal of Physics A: Mathematical and Genera

    Physical applications of second-order linear differential equations that admit polynomial solutions

    Full text link
    Conditions are given for the second-order linear differential equation P3 y" + P2 y'- P1 y = 0 to have polynomial solutions, where Pn is a polynomial of degree n. Several application of these results to Schroedinger's equation are discussed. Conditions under which the confluent, biconfluent, and the general Heun equation yield polynomial solutions are explicitly given. Some new classes of exactly solvable differential equation are also discussed. The results of this work are expressed in such way as to allow direct use, without preliminary analysis.Comment: 13 pages, no figure

    Anomalous single production of fourth generation tt' quarks at ILC and CLIC

    Full text link
    We present a detailed study of the anomalous single fourth generation tt' quark production within the dominant Standard Model(SM) decay modes at future e+ee^+e^- colliders. We calculate the signal and background cross sections in the mass range 300-800 GeV. We also discuss the limits of tqγt'q\gamma and tqZt'qZ (q=u,cq=u,c) anomalous couplings as well as values of attainable integrated luminosity for 3σ\sigma observation limit.Comment: 12 pages, 14 figures, version to be published on Nucl.Phys.

    Coulomb plus power-law potentials in quantum mechanics

    Full text link
    We study the discrete spectrum of the Hamiltonian H = -Delta + V(r) for the Coulomb plus power-law potential V(r)=-1/r+ beta sgn(q)r^q, where beta > 0, q > -2 and q \ne 0. We show by envelope theory that the discrete eigenvalues E_{n\ell} of H may be approximated by the semiclassical expression E_{n\ell}(q) \approx min_{r>0}\{1/r^2-1/(mu r)+ sgn(q) beta(nu r)^q}. Values of mu and nu are prescribed which yield upper and lower bounds. Accurate upper bounds are also obtained by use of a trial function of the form, psi(r)= r^{\ell+1}e^{-(xr)^{q}}. We give detailed results for V(r) = -1/r + beta r^q, q = 0.5, 1, 2 for n=1, \ell=0,1,2, along with comparison eigenvalues found by direct numerical methods.Comment: 11 pages, 3 figure

    An Improvement of the Asymptotic Iteration Method for Exactly Solvable Eigenvalue Problems

    Full text link
    We derive a formula that simplifies the original asymptotic iteration method formulation to find the energy eigenvalues for the analytically solvable cases. We then show that there is a connection between the asymptotic iteration and the Nikiforov--Uvarov methods, which both solve the second order linear ordinary differential equations analytically.Comment: RevTex4, 8 page

    Exact solutions for vibrational levels of the Morse potential via the asymptotic iteration method

    Get PDF
    Exact solutions for vibrational levels of diatomic molecules via the Morse potential are obtained by means of the asymptotic iteration method. It is shown that, the numerical results for the energy eigenvalues of 7Li2^{7}Li_{2} are all in excellent agreement with the ones obtained before. Without any loss of generality, other states and molecules could be treated in a similar way
    corecore