research

Physical applications of second-order linear differential equations that admit polynomial solutions

Abstract

Conditions are given for the second-order linear differential equation P3 y" + P2 y'- P1 y = 0 to have polynomial solutions, where Pn is a polynomial of degree n. Several application of these results to Schroedinger's equation are discussed. Conditions under which the confluent, biconfluent, and the general Heun equation yield polynomial solutions are explicitly given. Some new classes of exactly solvable differential equation are also discussed. The results of this work are expressed in such way as to allow direct use, without preliminary analysis.Comment: 13 pages, no figure

    Similar works