185 research outputs found

    Second harmonic generation on self-assembled GaAs/Au nanowires with thickness gradient

    Get PDF
    Here we investigated the SH generation at the wavelength of 400 nm (pump laser at 800 nm, 120 fs pulses) of a "metasurface" composed by an alternation of GaAs nano-grooves and Au nanowires capping portions of flat GaAs. The nano-grooves depth and the Au nanowires thickness gradually vary across the sample. The samples are obtained by ion bombardment at glancing angle on a 150 nm Au mask evaporated on a GaAs plane wafer. The irradiation process erodes anisotropically the surface, creating Au nanowires and, at high ion dose, grooves in the underlying GaAs substrate (pattern transfer). The SHG measurements are performed for different pump linear polarization angle at different positions on the "metasurface" in order to explore the regions with optimal conditions for SHG efficiency. The pump polarization angle is scanned by rotating a half-wave retarder plate. While the output SH signal in reflection is analyzed by setting the polarizer in s or p configuration in front of the detector. The best polarization condition for SHG is obtained in the configuration where the pump and second harmonic fields are both p polarized, and the experiments show a SH polarization dependence of the same symmetry of bulk GaAs. Thus, the presence of gold contributes only as field localization effect, but do not contributes directly as SH generator

    Control of Au nanoantenna emission enhancement of magnetic dipolar emitters by means of VO2 phase change layers

    Get PDF
    Active, ultra-fast external control of the emission properties at the nanoscale is of great interest for chip-scale, tunable and efficient nanophotonics. Here we investigated the emission control of dipolar emitters coupled to a nanostructure made of an Au nanoantenna, and a thin vanadium dioxide (VO2) layer that changes from semiconductor to metallic state. If the emitters are sandwiched between the nanoantenna and the VO2 layer, the enhancement and/or suppression of the nanostructure’s magnetic dipole resonance enabled by the phase change behavior of the VO2 layer can provide a high contrast ratio of the emission efficiency. We show that a single nanoantenna can provide high magnetic field in the emission layer when VO2 is metallic, leading to high emission of the magnetic dipoles; this emission is then lowered when VO2 switches back to semiconductor. We finally optimized the contrast ratio by considering different orientation, distribution and nature of the dipoles, as well as the influence of a periodic Au nanoantenna pattern. As an example of a possible application, the design is optimized for the active control of an Er3+ doped SiO2 emission layer. The combination of the emission efficiency increase due to the plasmonic nanoantenna resonances and the ultra-fast contrast control due to the phase-changing medium can have important applications in tunable efficient light sources and their nanoscale integration

    Asymmetric transmission and anomalous refraction in metal nanowires metasurface

    Get PDF
    Here we investigated the asymmetric transmission and the anomalous refraction introduced by a metasurface of bent gold nanowires. The refraction follows the generalized Snell's law that takes into account the resonant behavior of metallic nanostructures located at the interface between two dielectrics. Measurements performed in the linear optical regime reveal a large sensitivity to the subwavelength features of the gold nanostructures

    A Reappraisal of Lymphadenectomy in Common Gynecological Cancers

    Get PDF
    Objectives: Lymph node dissection (LND) in gynecological malignancies has always been a cornerstone in the diagnosis of metastasis, it is also considered an important prognostic factor, and a reliable guide to management strategies. However, its incidence of complications, namely lymphedema, vascular injuries and other lesions, has led to a reconsideration of its efficacy and a comparison of the role of systematic vs. sentinel lymph node (SLN) dissection. Mechanism: Review of the literature using keywords such as “lymph nodes”, “sentinel lymph nodes”, “morbidity and mortality”, “gynecological cancers”, “endometrial cancer”, “ovarian cancer”, and “cervical cancer”. Findings in Brief: In the case of endometrial cancer, several studies have investigated the efficacy of SLN compared with systematic LND. Most of the results demonstrated the efficacy of SLN dissection in endometrial cancer, with the added benefit of lower morbidity. In patients with ovarian cancer, the mainstay of treatment is debulking with optimal cytoreductive surgery. Recent studies have compared systematic lymphadenectomy to non-lymphadenectomy, with an additional advantage in the cases of lymphadenectomy. However, since its publication, the lymphadenectomy in ovarian cancers (LIONS) trial, has revolutionized the standard of care for patients with advanced ovarian cancer and has called into question the increased morbidity and mortality in systematic lymphadenectomy. In cervical cancers, lymph node status is considered to be the most important prognostic factor. In this case, limiting lymphadenectomy to the borders of the inferior mesenteric artery seems promising, and studies are currently being carried out to investigate the feasibility of SLN dissection instead of systematic lymph node dissection. Conclusions: SLN dissection is associated with lower morbidity and mortality, and has been shown to be superior to systematic lymphadenectomy in several studies. However, more research and specific guidelines are needed to better select either one or the other method in the management of gynecological cancers. Copyright: © 2023 The Author(s)

    Second harmonic generation from metallo-dielectric multilayer photonic band gap structures

    Full text link
    We experimentally and theoretically investigate the second order nonlinear optical response of metallo-dielectric multilayer structures composed of Ag and Ta2O5 layers, deposited by magnetron sputtering. Second harmonic generation measurements were performed in reflection mode as a function of incidence angle, using femtosecond pulses originating from a Ti:Sapphire laser system tuned at 800 nm. The dependence of the generated signal was investigated as a function of pump intensity and polarization state. Our experimental results show that the conversion efficiency from a periodic metallo-dielectric sample may be enhanced by at least a factor of 30 with respect to the conversion efficiency from a single metal layer, thanks in part to the increased number of active surfaces, pump field localization and penetration inside the metal layers. The conversion efficiency maximum shifts from 70 degrees for the single silver layer down to approximately 55 degrees for the stack. The experimental results are found to be in good agreement with calculations based on coupled Maxwell-Drude oscillators under the action of a nonlinear Lorentz force term

    Mapping the nonlinear optical susceptibility by noncollinear second harmonic generation

    Full text link
    We present a method, based on noncollinear second harmonic generation, to evaluate the non-zero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows to verify if Kleinman symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from Gallium Nitride layers are reported. The proposed method does not require an angular scan thus is useful when the generated signal is strongly affected by sample rotationComment: To appear on Opt. Let

    Wide-band optical field concentrator for low-index core propagation

    Get PDF
    We propose a novel chirped structure consisting of a low index polymer core bounded by modulated multilayer claddings, to realize an optical field concentrator with virtually zero propagation losses in a wide spectral range, independent of wave polarization. In spite of the absence of the total internal reflection mechanism, properly designed multilayer claddings ensure the achievement of unitary transmittance in a wide spectral range, including the widely used wavelengths for optical communications. Several cladding geometries obtained by varying the thicknesses of the cladding layers are reported and discussed.Comment: submitted to the Journal of the European Optical Societ

    Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab

    Full text link
    We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme
    • …
    corecore