119 research outputs found

    Efficient compliance checking of RDF data

    Get PDF
    Automated compliance checking, i.e. the task of automatically assessing whether states of affairs comply with normative systems, has recently received a lot of attention from the scientific community, also as a consequence of the increasing investments in Artificial Intelligence technologies for the legal domain (LegalTech). The authors of this paper deem as crucial the research and implementation of compliance checkers that can directly process data in RDF format, as nowadays more and more (big) data in this format are becoming available worldwide, across a multitude of different domains. Among the automated technologies that have been used in recent literature, to the best of our knowledge, only two of them have been evaluated with input states of affairs encoded in RDF format. This paper formalizes a selected use case in these two technologies and compares the implementations, also in terms of simulations with respect to shared synthetic datasets

    Towards realistic laparoscopic image generation using image-domain translation

    Get PDF
    Background and ObjectivesOver the last decade, Deep Learning (DL) has revolutionized data analysis in many areas, including medical imaging. However, there is a bottleneck in the advancement of DL in the surgery field, which can be seen in a shortage of large-scale data, which in turn may be attributed to the lack of a structured and standardized methodology for storing and analyzing surgical images in clinical centres. Furthermore, accurate annotations manually added are expensive and time consuming. A great help can come from the synthesis of artificial images; in this context, in the latest years, the use of Generative Adversarial Neural Networks (GANs) achieved promising results in obtaining photo-realistic images. MethodsIn this study, a method for Minimally Invasive Surgery (MIS) image synthesis is proposed. To this aim, the generative adversarial network pix2pix is trained to generate paired annotated MIS images by transforming rough segmentation of surgical instruments and tissues into realistic images. An additional regularization term was added to the original optimization problem, in order to enhance realism of surgical tools with respect to the background. Results Quantitative and qualitative (i.e., human-based) evaluations of generated images have been carried out in order to assess the effectiveness of the method. ConclusionsExperimental results show that the proposed method is actually able to translate MIS segmentations to realistic MIS images, which can in turn be used to augment existing data sets and help at overcoming the lack of useful images; this allows physicians and algorithms to take advantage from new annotated instances for their training

    One More Decidable Class of Finitely Ground Programs

    Get PDF
    Abstract. When a logic program is processed by an answer set solver, the first task is to generate its instantiation. In a recent paper, Calimeri et el. made the idea of efficient instantiation precise for the case of disjunctive programs with function symbols, and introduced the class of “finitely ground ” programs that can be efficiently instantiated. Since that class is undecidable, it is important to find its large decidable subsets. In this paper, we introduce such a subset—the class of argument-restricted programs. It includes, in particular, all finite domain programs, ω-restricted programs, and λ-restricted programs.

    Logic Programming and Logarithmic Space

    Full text link
    We present an algebraic view on logic programming, related to proof theory and more specifically linear logic and geometry of interaction. Within this construction, a characterization of logspace (deterministic and non-deterministic) computation is given via a synctactic restriction, using an encoding of words that derives from proof theory. We show that the acceptance of a word by an observation (the counterpart of a program in the encoding) can be decided within logarithmic space, by reducing this problem to the acyclicity of a graph. We show moreover that observations are as expressive as two-ways multi-heads finite automata, a kind of pointer machines that is a standard model of logarithmic space computation

    Applying ASP to UML model validation

    Get PDF
    We apply ASP to model validation in a CASE setting, where models are UML class diagrams and object diagrams are called \u201csnapshots\u201d. We present the design and implementation of MSG, a snapshot generator for UML models that employs DLV-Complex as a generator engine, the answer sets representing the legal snapshots

    Use of hormones in doping and cancer risk

    Get PDF
    Hormones with anabolic properties such as growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are commonly abused among professional and recreational athletes to enhance physical ability. Despite their adverse effects are well-documented, the use of GH and IGF-1 has recently grown. This article highlights the anabolic activity related to mechanisms of cancer development and progression. GH/IGF-1 axis is able to activate cellular mechanisms that modulate every key stage of cancer formation and progression, such as inhibition of apoptosis, resistance to treatments, and induction of angiogenesis, metastatic process and cell proliferation. Results from pre-clinical studies and epidemiological observations in patients with an excess of GH and IGF-1 production or treated with these hormones showed a positive association with the risk to develop several types of cancer. In conclusion, athletes should be made aware that long-term treatment with doping agents might increase the risk of developing cancer, especially if associated with other licit or illicit drugs and/or high-protein diet

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Δ3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table
    • …
    corecore