464 research outputs found

    Torsional birefringence in metric-affine Chern-Simons gravity: gravitational waves in late-time cosmology

    Full text link
    In the context of the metric-affine Chern-Simons gravity endowed with projective invariance, we derive analytical solutions for torsion and nonmetricity in the homogeneous and isotropic cosmological case, described by a flat Friedmann-Robertson-Walker metric. We describe in some details the general properties of the cosmological solutions in the presence of a perfect fluid, such as dynamical stability and the settling of big bounce points, and we discuss the structure of some specific solutions reproducing de Sitter and power law behaviours for the scale factor. Then, we focus on first-order perturbations in the de Sitter scenario, and we study the propagation of gravitational waves in the adiabatic limit, looking at tensor and scalar polarizations. In particular, we find that metric tensor modes couple to torsion tensor components, leading to the appearance, as in the metric version of Chern-Simons gravity, of birefringence, described by different dispersion relations for the left and right circularized polarization states. As a result, the purely tensor part of torsion propagates like a wave, while nonmetricity decouples and behaves like a harmonic oscillator. Finally, we discuss scalar modes, outlining as they decay exponentially in time and do not propagate.Comment: References adde

    Structure of velocity distributions in shock waves in granular gases with extension to molecular gases

    Get PDF
    International audienceVelocity distributions in normal shock waves obtained in dilute granular flows are studied. These distributions cannot be described by a simple functional shape and are believed to be bimodal. Our results show that these distributions are not strictly bimodal but a trimodal distribution is shown to be sufficient. The usual Mott-Smith bimodal description of these distributions, developed for molecular gases, and based on the coexistence of two subpopulations (a supersonic and a subsonic population) in the shock front, can be modified by adding a third subpopulation. Our experiments show that this additional population results from collisions between the supersonic and subsonic subpopulations. We propose a simple approach incorporating the role of this third intermediate population to model the measured probability distributions and apply it to granular shocks as well as shocks in molecular gases

    Numerical studies towards practical large-eddy simulation

    Get PDF
    Large-eddy simulation developments and validations are presented for an improved simulation of turbulent internal flows. Numerical methods are proposed according to two competing criteria: numerical qualities (precision and spectral characteristics), and adaptability to complex configurations. First, methods are tested on academic test-cases, in order to abridge with fundamental studies. Consistent results are obtained using adaptable finite volume method, with higher order advection fluxes, implicit grid filtering and "low-cost" shear-improved Smagorinsky model. This analysis particularly focuses on mean flow, fluctuations, two-point correlations and spectra. Moreover, it is shown that exponential averaging is a promising tool for LES implementation in complex geometry with deterministic unsteadiness. Finally, adaptability of the method is demonstrated by application to a configuration representative of blade-tip clearance flow in a turbomachine

    Energy radiation of moving cracks

    Full text link
    The energy radiated by moving cracks in a discrete background is analyzed. The energy flow through a given surface is expressed in terms of a generalized Poynting vector. The velocity of the crack is determined by the radiation by the crack tip. The radiation becomes more isotropic as the crack velocity approaches the instability threshold.Comment: 7 pages, embedded figure

    Tactics for Reasoning modulo AC in Coq

    Get PDF
    We present a set of tools for rewriting modulo associativity and commutativity (AC) in Coq, solving a long-standing practical problem. We use two building blocks: first, an extensible reflexive decision procedure for equality modulo AC; second, an OCaml plug-in for pattern matching modulo AC. We handle associative only operations, neutral elements, uninterpreted function symbols, and user-defined equivalence relations. By relying on type-classes for the reification phase, we can infer these properties automatically, so that end-users do not need to specify which operation is A or AC, or which constant is a neutral element.Comment: 16

    Crystallization of Ge2Sb2Te5 nanometric phase change material clusters made by gas-phase condensation

    Get PDF
    International audienceThe crystallization behavior of Ge2Sb2Te5 nanometric clusters was studied using X-ray diffraction with in situannealing. Clusters were made using a sputtering gas-phase condensation source, which allowed for the growth of well-defined, contaminant-free, and isolated clusters. The average size for the clusters is 5.7 ± 1 nm. As-deposited amorphous clusters crystallize in the fcc cubic phase at 180 °C, while for thin films, the phase change temperature is 155 °C. This observation illustrates the scalability of the Ge2Sb2Te5phase change from the amorphous to the cubic state in three-dimensionally confined systems in this size range

    Crack Front Waves and the dynamics of a rapidly moving crack

    Full text link
    Crack front waves are localized waves that propagate along the leading edge of a crack. They are generated by the interaction of a crack with a localized material inhomogeneity. We show that front waves are nonlinear entities that transport energy, generate surface structure and lead to localized velocity fluctuations. Their existence locally imparts inertia, which is not incorporated in current theories of fracture, to initially "massless" cracks. This, coupled to crack instabilities, yields both inhomogeneity and scaling behavior within fracture surface structure.Comment: Embedded Latex file including 4 figure

    Continuum field description of crack propagation

    Full text link
    We develop continuum field model for crack propagation in brittle amorphous solids. The model is represented by equations for elastic displacements combined with the order parameter equation which accounts for the dynamics of defects. This model captures all important phenomenology of crack propagation: crack initiation, propagation, dynamic fracture instability, sound emission, crack branching and fragmentation.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Lett. Additional information can be obtained from http://gershwin.msd.anl.gov/theor
    • …
    corecore