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Structure of velocity distributions in shock waves in granular
gases with extension to molecular gases

A. Vilquin, J. F. Boudet, and H. Kellay
Université de Bordeaux, Laboratoire Ondes et Matière d’Aquitaine, UMR 5798 U. Bordeaux/

CNRS, 351 cours de la Libération, 33405 Talence, France

Velocity distributions in normal shock waves obtained in dilute granular flows are studied. These distributions
cannot be described by a simple functional shape and are believed to be bimodal. Our results show that these
distributions are not strictly bimodal but a trimodal distribution is shown to be sufficient. The usual Mott-Smith
bimodal description of these distributions, developed for molecular gases, and based on the coexistence of
two subpopulations (a supersonic and a subsonic population) in the shock front, can be modified by adding
a third subpopulation. Our experiments show that this additional population results from collisions between
the supersonic and subsonic subpopulations. We propose a simple approach incorporating the role of this third
intermediate population to model the measured probability distributions and apply it to granular shocks as well
as shocks in molecular gases.

I. INTRODUCTION

Unlike a sound wave, which is a small-amplitude com-
pression wave leaving the propagation medium unchanged,
a shock wave creates violent changes in pressure, velocity,
density, and temperature on short length scales comparable to
the mean free path [1]. In the reference frame of the shock
wave, the supersonic gas is compressed and heated in the front
region to become subsonic on the other side. The shock front
structure (see Fig. 1) has been the subject of several studies in
gases [2–8], plasmas [9–11], and in granular materials [12–19].
A normal shock wave was first described as a discontinuity.
The conditions linking the macroscopic properties on either
side of the shock front were deduced by V. Rankine (1870)
and H. Hugoniot (1889) and several theoretical studies [20–23]
focused on such properties.

A conspicuous feature of shock waves is their highly
nonequilibrium nature. In 1951 Mott-Smith developed a
theory [20] where a shock wave is described as a superposition
of a supersonic stream and a subsonic stream: their proportions
vary with position along the front and a bimodal velocity
distribution is assumed. Figure 1 illustrates this theory with the
density increase in the shock front along with the probability
density functions (PDF) of the velocity at different positions
along the front. The thin Gaussian PDF of the supersonic
stream (A) is gradually replaced by the wider Gaussian PDF
in the heated subsonic stream (C). A superposition of these two
distributions and thus a bimodal distribution is assumed in the
shock front (B). This model provided a basis for calculating
shock wave properties such as the shock width and gave rise
to many subsequent studies [23–26].

Despite its fundamental importance, the bimodal structure
of the velocity distributions had to await experimental con-
firmation. Experiments in different media [5,6,9,10,17] show
that the velocity distributions cannot be described by a simple
functional shape in the shock front region. Measurements
of the velocity distributions in the shock front [6] in gases
showed that the velocity PDFs are not strictly bimodal pointing
to the existence of a substantial number of particles with
intermediate velocities (see Fig. 1). A few studies [27,28]

reproduce these experimental PDFs with molecular dynamics
as well as Monte Carlo simulations. However, and despite their
key role in understanding the shock front structure, particle
velocity distributions are still poorly understood.

In this paper, we examine the velocity distributions in
normal shock waves obtained in dilute granular flows. These
flows have similarities with gas flows [29–36] and are the basis
for the development of the granular kinetic theory constructed
from the inelastic Boltzmann equation. The low speed of
granular pressure disturbances (typically in the range of cm/s),
equivalent to the speed of sound in gases, allows us to easily
generate shock waves [13–17]. Here, we use two experimental
setups to produce granular shock fronts. The first is a dilute
granular flow around a circular obstacle as in Ref. [17],
where a bimodal-like structure for the velocity distributions
has been observed. The second is a vibrated granular gas
where the shock front is produced by a moving rectangular
obstacle and for which a bimodal-like structure is again
observed. While these velocity distributions can be described
qualitatively using a bimodal distribution, a substantial amount
of particles have intermediate velocities and do not belong
to either the supersonic or the subsonic stream as observed
in gases. Our main interest is the origin of these particles
and our experiments show that the particles with intermediate
velocities are the result of only a few collisions between the
incident supersonic stream and the subsonic stream. A simple
model where the two streams interact in the shock front region
via binary collisions allows us to predict the density of these
intermediate particles and therefore the velocity distributions
at different locations along the shock front.

The article is organized as follows. First we recall the
properties of shock fronts in gases and summarize the theory
of Mott-Smith for the velocity distributions. We then describe
our experiments using gravity-driven granular flows around a
circular obstacle as well as the identification and analysis of
the intermediate particle population. This leads us to propose a
model to obtain this population from binary collisions between
the supersonic and subsonic streams. We use this model to
analyze another set of experiments using a vibrated granular

 1



FIG. 1. Density profile in a normal shock wave with PDFs of
particle velocity in the insets, based on the Mott-Smith theory for
Ma = 25. Experimental data in the inset (B) come from Ref. [6]. Note
the presence of a significant number of particles with intermediate
velocities not accounted for by the Mott-Smith distribution.

gas and other experimental and numerical results obtained
using molecular gases.

II. SHOCK FRONTS IN MOLECULAR GASES

In this section, we recall the properties of the velocity
distributions in a one-dimensional shock front. First, let us
introduce the jump relations established by Rankine and Hugo-
niot. These relations, obtained by using the conservation laws
for energy, momentum, and mass through the shock front for
a nondissipative gas, can be written in the reference frame of
the shock front (for a perfect gas with n degrees of freedom) as

ρ∗
2

ρ∗
1

= n + 1

1 + nMa−2 ,

V2

V1
= 1 + nMa−2

n + 1
, (1)

T2

T1
= (1 + nMa−2)[(n + 2)Ma2 − 1]

(n + 1)2
.

These relations link the values of the mean velocity V2, the
temperature T2, and the number density ρ∗

2 (far from the front)
describing the subsonic flow to their counterparts describing
the supersonic flow (V1, T1, ρ

∗
1 ) for different Mach numbers,

which is defined as Ma = V1/C1, where C1 is the sound speed
in the supersonic flow. These relations give no indication as to
the density profile or the temperature profile across the shock
front. This information requires a detailed description of the
front region.

To describe the shock front, Mott-Smith separates the
shock into two subpopulations, the supersonic and subsonic
populations, which exist on either side of the front, and as-

sumes a superposition of these two subpopulations in the front
region. He then makes a very simple hypothesis; the velocity
distribution in the shock front is bimodal and is the sum of two
Gaussian distributions reflecting the coexistence of these two
populations in the shock front. The velocity and temperature
of each population are those before and after the shock front
(and interconnected by the jump relations above), but the
proportion of each population varies across this front. The
velocity distribution function is then written as f = f1 + f2:

fi(
→
c ) = ρi(y)

(2πkTi/m)3/2
exp

(
− (→c − Vi

→
ey )2

2kTi/m

)
, i = 1, 2.

(2)

Here →
c = u

→
ex + v

→
ey + w

→
ez is the vector velocity of a

particle, k and m are the Boltzmann constant and the mass
of the molecules, respectively, and y is the coordinate in
the direction perpendicular to the shock front. The number
densities ρi(y) represent, respectively, the local density of
supersonic particles (i = 1) and subsonic particles (i = 2).
To find the density profile across the shock, Mott-Smith then
calculates the moment of order 2 of the longitudinal velocity v

using the Boltzmann equation [20] and obtains the following
closure equation:

dρ1(y)

dy
= −B

ρ1(1 − ρ1/ρ
∗
1 )

λ
,

where λ is the mean free path. The coefficient B only depends
on Ma and n. This equation is used to find the number density
profile of each population:

ρ1 (y) = ρ∗
1 [1 + exp(−By/λ)]−1,

ρ2(y) = ρ∗
2 [1 + exp(By/λ)]−1. (3)

The width of the shock front is therefore given by LMS =
4λ/B. The bimodal distribution proposed by Mott-Smith is,
however, not a solution of the Boltzmann equation, which
describes the shock front (a similar calculation with the third
moment, instead of the second moment of the longitudinal
velocity, leads to a similar closure equation but with a
coefficient B, which is slightly different). Nonetheless, the
results obtained using this theory are very similar to those
observed in experiments and simulations. For example, for
a gas of hard spheres, the shock width variation with the
Mach number complies with numerical simulations to within
10% accuracy. In fact, the results given by Mott-Smith quite
faithfully reflect macroscopic variables and their evolution
through the shock front. But, they do not accurately reflect the
shape of the velocity distributions; along the longitudinal axis,
the experimentally measured distributions show that there is an
overpopulation at intermediate velocities (see Fig. 1) hinting
at the existence of an additional population.

Salwen [24] extended the Mott-Smith approach to a three-
population model. He added a third population to the two
populations fi (i = 1, 2) given by Mott-Smith to take into
account the surplus at intermediate velocities. He selected a
form for the velocity distribution of the third population (i = 3)
that satisfies the Euler equations written for a model with three
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FIG. 2. (a) Total volume fraction φtot in the shock front plotted versus the distance y from the obstacle. Note that the particle density is
high near the obstacle and decreases as the distance to the obstacle increases. 0 corresponds to the summit of the circular obstacle. Inset:
photograph of the shock front induced around a circular obstacle. The yellow rectangle indicates the study area (b), where φtot is measured. (a),
(b), e = 2 mm, φ∗

1 = 0.015, V1 = 1.4 m/s, and Ma ∼ 60. (b) Photograph of the shock front around a circular obstacle in the study area, shown
in the inset of (a). Here the obstacle is at the bottom of the image and is light gray while the particles appear as dark disks with a small bright
spot near the middle. Yellow arrows indicate particle velocities. Both photographs [inset in (a) and (b)] are taken using reflection from a broad
white light source. (c) Representation of 50 particle paths, with one highlighted in bold, in a normal shock front in a granular flow around a
circular obstacle. (d) Histograms of v (black) and u (red), respectively, longitudinal and transverse velocities normalized by the mean velocity
of the supersonic stream V1 in three different regions: the initial stream (A), the shock front (B), and near the obstacle (C). Note the presence
of intermediate velocity particles in region (B). (c), (d), e = 1.5 mm, φ∗

1 = 0.007, V1 = 1.1 m/s, and M ∼ 30.

populations (written here for Ma = ∞ and n = 3):

f3(→c ) = ρ3(y)

(2πkT3/m)3/2

∣∣∣∣ v − V3√
kT3/m

∣∣∣∣ exp

(
− (→c − V3

→
ey )2

2kT3/m

)
,

V3 = V1/2 and T3 = mV 2
1 /20k. (4)

Then he calculated two higher-order moments of the velocity
using the Boltzmann equation to get two closure relations,
which are needed for a model with three populations. However,
this distribution is not in agreement with the experimental
distributions; in particular, f3 = 0 for v = V1/2, which is not
born out experimentally (see Fig. 1). In this work, we highlight
the importance of the third population as well as point out its
origin from experiments in granular shock fronts.

III. SHOCK WAVES IN DILUTE GRANULAR FLOWS
AROUND AN OBSTACLE

A. Experiments and results

In this section we use a granular gas flowing around an
obstacle to produce shock fronts and examine the velocity
distributions across this front in detail. As mentioned above,
the system we use shows the presence of a bimodal-like
distribution for the velocity in the shock front region [17]. We
examine here the presence of intermediate velocity particles
in this region and track their origin through the tracking of
individual particles as they enter the shock front.

The experimental setup uses two parallel glass plates set
vertically and spaced by a distance e (1.5d < e < 8d) [12,17].

Steel beads (d = 1 mm) are poured between the glass plates
from an upper reservoir equipped with a gate to control the
incident volume fraction of the particles. A circular obstacle
(radius R = 4 cm, thickness e) is inserted between the plates
at distances between 5 and 30 cm from the cell entrance. The
beads fall under the action of gravity. The circular shape of the
obstacle forces a two-dimensional flow [inset Fig. 2(a)] and a
stationary shock front is formed above the obstacle summit.
The total particle volume fraction φtot increases from low
values near the incident volume fraction far from the obstacle
to much higher values near the obstacle. The volume fraction
of the incident supersonic stream φ∗

1 can be varied from 0.4%
to 2%. Its velocity V1 can be varied from 1 to 2.5 m/s.

To obtain the local volume fractions and the particle
velocities, the reflected light from the beads is collected with
a fast camera at 4000 frames/s, allowing an efficient counting
and tracking of the particles [Fig. 2(b)]. Each bead acts as a
spherical mirror reflecting light from a spot smaller than the
bead diameter. This makes the tracking of particles and their
collisions simple as during a collision between two beads, the
light spots stay separated [see Fig. 2(b)]. From the granular
temperature T = δc2 (δ→c is the standard deviation of the
velocity →

c [29]) and φ∗
1 , we estimate the Mach number Ma

for this flow configuration to be between 10 and 60 depending
on the mean velocity and the temperature of the incident
stream. This velocity depends on the position of the obstacle
with respect to the entrance, while the temperature depends
on this position as well as the entrance conditions. Both
quantities are systematically measured in each experiment.
The speed of sound used here, taking 6 degrees of freedom,
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is given by [37]

c′ =
√

T X

[
1 + 1

3
X + φ

X

dX

dφ

]
, (5)

where X(φ) = 1 + 2(1 + r)φ/(1 − (φ/φMAX)
4
3 φMAX ), r is the

inelasticity coefficient and φMAX = 0.65 is the random close-
packing volume fraction.

The starting point for understanding the velocity distribu-
tions in the shock front above the obstacle is summarized in
Fig. 2. This figure shows both particle paths [Fig. 2(c)] and
the histograms of particle velocities denoted N [Fig. 2(d)].
Three different regions can be distinguished. In region (A),
particles falling under gravity in the supersonic stream do not
collide with each other. The velocity histogram has a single
sharp peak centered at the free fall velocity V1. In region (B),
which corresponds to the shock front, the particles experience
only a few collisions and an overall bimodal-like shape of
the velocity histogram is observed as in Ref. [17]. In region
(C), the density of particles increases and numerous collisions
occur; the velocity histograms are single peaked but broad
giving a higher granular temperature than in region (A). These
observations show that the flow is constituted by a supersonic
stream (region A), a subsonic stream where the temperature
is higher and the particle collisions are numerous (region C),
and an intermediate region where collisions are sparse but
the histograms look bimodal. As in gases [6], an important
fraction of particles with intermediate velocities is observed.
The key to understanding the velocity histograms and therefore
the velocity PDFs (obtained by a proper normalization of
the histograms) is to relate their shapes to the occurrence
of collisions. By studying particle paths [see Fig. 2(c)], we
can disentangle particles that have experienced no collisions
from particles that have experienced 1, 2, or more collisions
in regions (B) and (C) and gauge their role and weight in the
velocity distributions.

In Fig. 3, we plot as open symbols the volume fraction of
detected particles that have experienced no collisions φ1 versus
distance from the obstacle y normalized by the mean free path
in the incident stream λ = d/6

√
2φ∗

1 . Note that φ1/φ
∗
1 is near

1 far from the obstacle, decreases as collisions start to occur
in region (B) before going to zero in region (C), where the
number of collisions becomes important. Figure 3 also shows
the volume fraction of detected particles having experienced a
single collision φ3 as well as two collisions φ4. Both fractions
are near zero in region (A) where no collisions occur, increase
in region (B), and go through a peak before decreasing to zero
in region (C). Note that φ3 has a peak at an earlier position than
φ4. While we tracked particles up to 3 collisions, successive
collisions are increasingly difficult to detect as they occur in
regions where the total volume fraction φtot increases (see inset
of Fig. 3). The other symbols (solid lines and solid symbols)
are discussed below.

In order to illustrate this further, we show in Fig. 4 the
PDFs of v (the component of the velocity normal to the
shock front) for particles following 1, 2, and 3 collisions
obtained from particle tracking [see Fig. 2(a)]. These PDFs
are for the velocities obtained just after collision. Note that
particles with a single collision have higher velocities and
should contribute the most to the presence of intermediate

.

FIG. 3. Volume fractions φ1(y), φ3(y), and φ4(y) of supersonic,
first-generation, and second-generation intermediate particles, re-
spectively. The open symbols are measurements obtained from
direct tracking (see Sec. III A). The solid lines are from our model
where A32/A12 = 1.05 and A42/A12 = 1.4 (see Sec. III B). The solid
symbols are from the fit of the velocity PDFs with four populations
(as shown in Fig. 6). The total volume fraction is shown in the inset.
(e = 1.5 mm, φ∗

1 = 0.007, V1 = 1.1 m/s, and M ∼ 30).

velocities in the full distribution of v shown in Fig. 2 since
the velocity PDFs of particles with 2 and 3 collisions have
a peak at lower speed close to zero. Figure 4 also shows

FIG. 4. PDFs of v obtained just after 1, 2, or 3 collisions along
with the PDFs of u and v from which the contribution of the
supersonic as well as the histograms of particles after 1 or 2 collisions
has been subtracted. Note the isotropy of the velocity once this
subtraction is carried out. The PDFs of the subsonic particles will
be identified with these latter distributions.
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FIG. 5. (a) Histograms of u and v, normalized by the mean velocity of the supersonic stream V1 in region (B). The different symbols
represent the histograms of v for all particles (red), for supersonic particles only (green), u (blue), and v (black) without the contribution of
intermediate particles with 1 collision. Note that subtracting the contribution of the supersonic particles and that from intermediate particles
render the histograms of v closer to that of u by suppressing an important proportion of intermediate particles. The subtraction of the contribution
from intermediate particles to the PDF of u does not change its shape visibly (e = 1.5 mm, φ∗

1 = 0.007, V1 = 1.1 m/s, and M ∼ 30). While
in (a) we have subtracted the contribution of the histogram of the full intermediate particle population (for 1 collision), (b)–(e) show that the
histograms of this intermediate population (black symbols) obtained in region (B) are well approximated by the histograms of particle velocities
obtained just after a single collision (blue symbols). (b) e = 2 mm, φ∗

1 = 0.022, V1 = 1.5 m/s. (c) e = 2 mm, φ∗
1 = 0.004, V1 = 1.5 m/s.

(d) e = 1.5 mm, φ∗
1 = 0.007, V1 = 1.1 m/s. (e) e = 4 mm, φ∗

1 = 0.007, V1 = 1.5 m/s.

the PDF of u as well as the PDF of v to which we have
subtracted the contribution from the supersonic stream (i.e.,
particles having experienced no collisions) and from particles
with two collisions or less. For this subtraction, we have
used the measured volume fractions shown in Fig. 3. An
important observation is that these latter PDFs are roughly
similar: the velocity is isotropic once the contribution from
particles with few collisions has been removed. This points
to the fact that the population of particles with intermediate
velocities is mainly the result of a few collisions between
the incident supersonic stream and the subsonic stream near
the obstacle. While the supersonic stream can be identified
with its sharp velocity distribution at the incident stream
velocity and also obtained from particle tracking experiments
by identifying the particles having experienced no collisions,
the subsonic stream is more difficult to extract and we identify
this subsonic stream with the isotropic velocity distributions
obtained by subtracting the contribution from a few collisions
as discussed above and shown in Fig. 4. In fact, and in order to
reconstruct the subsonic stream distribution, a measurement
of the distribution of u to which the contribution of the
supersonic stream is subtracted turns out to be sufficient since
the additional subtraction of particles with a few collisions
does not induce measurable changes of this distribution. The
distribution of v is then taken as that of u. To illustrate this in
detail, let us now go back to the full histogram of v measured
in region (B) and shown in Fig. 5(a). We use the histograms,
i.e., the number of particles N , instead of probability density
functions here, as we need to remove the contribution of certain
classes of particles. The measured histogram has three main
contributions: the supersonic stream with particles having

experienced no collisions and whose histogram is known
from the tracking experiments described above and which
is superimposed on the full histogram, an isotropic subsonic
stream with particles having experienced more than two or
three collisions whose histogram of v is similar to that of
the transverse velocity (u), and intermediate particles having
experienced one or two collisions. Figure 5(a) shows that
subtracting, from the histogram of v, the contribution of full
intermediate particle population having experienced a single
collision (as obtained from particle tracking experiments at
the specific position from the obstacle) removes an important
proportion of the intermediate velocity population. This graph
indicates, nonetheless, that other intermediate populations
with more than a single collision are needed to remove the
full intermediate population.

Note here that the intermediate population needed to
understand these distributions, obtained at a specific position
from the obstacle as used in Fig. 5(a), is not equivalent to that
obtained just after the collisions (as shown for the purpose
of illustration in Fig. 4), since this latter does not take into
account the intermediate particles advected into and out of
the region of interest and does not take into account the
disappearance of these particles from this region. However, and
by tracking the true intermediate particles in a few runs, i.e.,
by tracking the particles over the whole experimental region
and identifying the particles having experienced 1 collision
and that have crossed this region, left it or were created
within it (a full counting of all intermediate particles after
1 collision and just before a second collision), it turns out
that the two distributions are close to each other as shown
in Figs. 5(b)–5(e) for different volume fractions, incident
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velocities, and values of e. While we do not have a justification
for this observation, the range of velocities that is of interest
must be correct as both distributions are the result of the same
collision between fast and slow particles. Further, the effects
of advection and additional collisions act differently on the
fast particles (more sensitive to advection which makes them
leave the measurement volume) and the slow particles (more
sensitive to a second collision and therefore disappear with a
higher probability than the faster particles). In short, collisions
act less on the faster particles and advection acts less on the
slower particles. We speculate that the combination of the two
makes for some compensation of the ignored effects in our
approximation making for a functional shape that is close to
that estimated using the creation part only.

Now that we have identified the origin of the intermediate
population, what is needed to predict the full velocity dis-
tribution is a model for the density and velocity distribution
of these particles. Here, we assume, in accordance with our
observations, that these particles are the result of a few
collisions between the supersonic and subsonic streams. We
identify the supersonic stream with the peak at the incident
velocity while the subsonic stream is identified as the isotropic
part of the full distribution. We then adopt simple rules: A
supersonic particle is converted to an intermediate particle after
a collision with a subsonic particle. This subsonic particle is
also converted to an intermediate particle. We also assume
that these intermediate particles, which are the product of
the first collision, will have shocks with subsonic particles
only and are converted to second generation intermediate
particles (the product of the second collision). We will call
the first generation of intermediate particles population 3 and
the second generation population 4.

B. Calculation of the volume fraction of intermediate particles

Following Mott-Smith, let us describe a normal shock
wave as a superposition of an incident supersonic stream
(population 1), a subsonic stream (population 2), and a third
state where particles have intermediate velocities (population
3). We assume this intermediate state to be the result of a single
collision between supersonic particles and subsonic particles.
We detail here the calculation of the volume fraction for one
intermediate state (population 3); however, the approach can
be extended to four subpopulations in a similar manner (see
Appendix A).

We consider here three subpopulations: the supersonic, the
subsonic, and the intermediate particles. Population transfers
between these three subsets occur in the shock wave. Super-
sonic particles collide once with subsonic ones to become
intermediate particles. In turn, these intermediate particles
collide with existing subsonic particles, leading to other
subsonic particles. We neglect collisions between intermediate
particles and supersonic particles, which are far less numerous
than the subsonic particles in the shock wave (in agreement
with our experimental observations for the gravity-driven flow
of particles around an obstacle). This assumption allows a great
simplification in our model but is not a priori valid, generally.
Thus, transfers for each subpopulation i (=1, 2, or 3) can be
described by appearance and disappearance processes, which

we write as

∂φi

∂t
+ ∂(φiVi)

∂y
=

(
∂φi

∂t

)
disp

+
(

∂φi

∂t

)
app

. (6)

Here φi and Vi are, respectively, the particle volume fraction
and the mean velocity along y for the subpopulation i. For a
stationary flow, ∂φi

∂t
= 0 for each subpopulation i. Supersonic,

subsonic, and intermediate populations are, respectively, noted
with an index i taking the values 1, 2, and 3, respectively.
From our model, supersonic particles can only disappear
after collisions with subsonic particles. One subsonic particle
disappears per such collision:

∂(φ1V1)

∂y
=

(
∂φ1

∂t

)
disp

= −J12, (7)

where J12 is the collision operator between supersonic and
subsonic particles. For two subpopulations a and b,

Jab =
∫∫

�fa(→c a)fb(→c b)|→c a − →
c b|d→

c ad
→
c b. (8)

� = πd2 is the cross section for hard spheres (particle
diameter d) and fi(

→
c i) is the PDF of particle velocities,

assumed Gaussian (for simplicity) in this calculation:

fi(
→
c i) = φi(y)

(2πTi)3/2
exp

(
− ( �Vi − →

c i)2

2Ti

)
, i = a,b. (9)

Ti is the granular temperature for the subpopulation i. The
collision operator can be written

Jab = Jba = 6
√

2

d
φaφb|Va − Vb| × Aab, (10)

Aab = F 3/2

6
√

π

∫ ∞

0
(|1 + x|3 − |1 − x|3) exp

(
−Fx2

2

)
x dx,

F = (Va − Vb)2

Ta + Tb

. (11)

Note that intermediate particles do not have a Gaussian
velocity distribution in molecular gases, leading to a slightly
different value of Aab. Similarly, velocity distributions are not
Gaussian in granular gases so the value of Aab given above
is only indicative. Subsonic particles appear after collisions
between intermediate particles and existing subsonic particles.
They disappear by collisions with supersonic particles:

∂(φ2V2)

∂y
=

(
∂φ2

∂t

)
disp

+
(

∂φ2

∂t

)
app

=
(

∂φ2

∂t

)
disp

−
(

∂φ3

∂t

)
disp

= −J12 + J32. (12)

Intermediate particles appear after collisions between super-
sonic particles and subsonic particles. A collision between
a supersonic particle and a subsonic particle leads to two
intermediate particles. They disappear after a second collision
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with a subsonic particle:

∂(φ3V3)

∂y
=

(
∂φ3

∂t

)
disp

+
(

∂φ3

∂t

)
app

=
(

∂φ3

∂t

)
disp

−
(

∂φ1

∂t

)
disp

−
(

∂φ2

∂t

)
disp

= −J32 + 2J12. (13)

Note that Eqs. (7), (12), and (13) respect the conservation of
mass. Because of momentum and energy conservation, the
mean velocity and the temperature of intermediate particles
can be expressed as

V3 = V1 + V2

2
and T3 = T1 + T2

2
+ (V1 − V2)2

4n
. (14)

From Eqs. (7), (8), (13), and (14), we can rewrite

∂(φ3V3)

∂y
= −2

∂(φ1V1)

∂y
− 6

√
2

d
φ3φ2(V3 − V2) × A32. (15)

The subsonic particle volume fraction φ2 can be expressed
from Eq. (7):

6
√

2

d
φ2 = − 1

A12

1

V1 − V2

1

φ1

∂(φ1V1)

∂y
. (16)

Thus, we can express the intermediate particle flux as

∂(φ3V3)

∂y
= −2

∂(φ1V1)

∂y
+ 1

2

A32

A12

φ3

φ1

∂(φ1V1)

∂y
. (17)

The mean velocity of supersonic particles has a constant value.
Also, we use an approximation where the mean velocity of
intermediate particles varies slowly for high values of V1. We
then obtain

V3

V1

∂φ3

∂φ1
= −2 + 1

2

A32

A12

φ3

φ1
. (18)

With limy→∞ φ1(y) = φ∗
1 , we obtain the analytical solution

for Eq. (18):

φ3 = K1φ
∗
1

[
φ1

φ∗
1

−
(

φ1

φ∗
1

)α]
,

K−1
1 = 1

2

V3

V1
(α − 1), (19)

α = 1

2

A32

A12

V1

V3
.

Notice that this calculation is carried out for an elastic case.
For the inelastic case, the only difference is the expression of
T3 given above, which is obtained numerically as explained
below and is slightly lower than the elastic estimate.

At positions deeper in the shock front, it can be necessary
to account for the second generation of intermediate particles
(population 4). The model can be extended to four subpop-
ulations: supersonic, subsonic, first-generation intermediate
particles, and second-generation intermediate particles. The
first-generation intermediate particles arise from a collision
between supersonic and subsonic particles as previously ex-
plained. The difference is that they become second-generation

intermediate particles after a second collision with existing
subsonic particles and turn into subsonic particles after a third
collision. As detailed in Appendix A, the volume fraction of
population 4 can be obtained.

The expressions for φ3 and φ4 derived above and in
Appendix A need to be slightly corrected to account for
the two-dimensionality of the granular flow. The results of
this model are plotted as solid lines in Fig. 3 along with
the measured volume fractions of these two subpopulations
already discussed in Fig. 3. The model shows a good agreement
with experimental measurements using particle tracking giving
an a posteriori justification for the different assumptions made,
such as neglecting collisions between intermediate particles
as well as collisions of these intermediate particles with
the supersonic stream. The values of A32/A12 and A42/A12

used to fit our experimental results are, however, different
from the calculated value by about 20%. We believe that the
non-Gaussian velocity distributions in the granular gas can
explain this difference.

C. The velocity PDF of the intermediate particles

Now that we can model the volume fraction of the interme-
diate populations, we need to calculate the velocity PDFs of
these intermediate particles after 1, 2, or more collisions. We
detail the way we calculate the velocity distributions of these
intermediate particles in the following.

From our model, intermediate particles are the result of
collisions between supersonic and subsonic particles. PDFs of
velocities have to be determined for these two subpopulations.
In the shock wave induced by a dilute granular flow around
a circular obstacle, the velocity PDF of the supersonic stream
can be obtained from the full velocity PDF as the peak at
the incident stream velocity: The population of supersonic
particles is obtained from the trajectories. A particle is
supersonic up to its first shock with a subsonic particle. The
subsonic particles have a zero mean velocity and PDFs of
parallel and perpendicular velocities that are isotropic, as
shown in Fig. 4. By taking a PDF of v for the subsonic particles
similar to that of u to which population 1 has been subtracted,
one obtains the full velocity PDF of the subsonic population
to a good approximation. These experimentally determined
distributions are then used to calculate the PDFs of velocities
of intermediate particles.

For two hard spheres, with velocities →
c 1 and →

c 2 before
the collision, which undergo an inelastic collision with friction,
we can write the following relations:

→
C 1 + →

C 2 = →
c 1 + →

c 2,

(
→
C 1 − →

C 2)→en = −r(→c 1 − →
c 2)→en ,

[(
→
C 1 − →

C 2) − (→c 1 − →
c 2)]→et = −μ|[(→C 1 − →

C 2)

−(→c 1 − →
c 2)]→en |,

where
→
C 1 and

→
C 2 are velocities after the collision, →

en

a unit vector linking the two sphere centers, →
et is a unit

vector perpendicular to �n, and r and μ are, respectively, the
inelasticity coefficient and the friction coefficient with constant
values r = 0.95 and μ = 0.15 for steel beads. Velocities after
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the collision can be calculated:

→
C 1 = →

c 1 − 1 + r

2
[(→c 1 − →

c 2)→en ]→en

−μ(1 + r)

2
|(→c 1 − →

c 2)→en |→et ,

→
C 2 = →

c 2 − 1 + r

2
[(→c 2 − →

c 1)→en ]→en

+μ(1 + r)

2
|(→c 1 − →

c 2)→en |→et .

Velocities of the first generation intermediate particles are
calculated using the velocity distributions of supersonic and
subsonic particles and a random impact parameter. For each
value of the impact parameter, a large number of supersonic
and subsonic velocities with a probability given by the PDFs
are selected to ensure the convergence of the calculated
distributions (see Appendix A). Similarly, velocities of the
second-generation intermediate particles are calculated using
the velocities of the first-generation intermediate particles
colliding with subsonic particles. The calculated PDFs of the
velocities are shown in Fig. 4 and show a good agreement with
experimental measurements from particle tracking.

This good agreement confirms that the first generation
intermediate particles (population 3) ultimately come from
collisions between the subsonic and supersonic populations
only and that the second-generation intermediate particles
(population 4) come from collisions between population 3
and subsonic particles mostly. By expanding our hypoth-
esis, the third-generation intermediate particles (population
5) only come from binary collisions between population 4
and subsonic particles. The velocity PDFs of these third-
generation intermediate particles is again in good agreement
with measurements shown in Fig. 4. We have to keep in
mind here that these distributions are obtained just after a
collision. These PDFs are not necessarily representative of the
distribution of the full intermediate population as explained
above. Nonetheless, Fig. 5 suggests that the distribution of
velocities just after collision is a good approximation of the
distribution of the full intermediate population at least after
one collision.

Having identified the origin of the intermediate particles,
we can calculate their effect on the full velocity PDFs
as shown in Fig. 6. Here, the velocity PDFs of the su-
personic and subsonic populations are fixed as explained
above, and the intermediate particle velocity PDFs can be
calculated after the first and the second collisions. Here, and
for convenience, the PDFs of the subsonic and supersonic
populations were fit to a symmetric functional shape of the
form exp(−[u2/v2

0,i + (v − Vi)2/v2
0,i + w2/v2

0,i]
η
) (i = 1,2),

with η obtained from nonlinear curve fitting. This functional
shape is not modified for the supersonic population as the
distance from the obstacle changes while only v0,2 changes
for the subsonic population (V2 = 0). The value of η does not
depend on the Mach number and is near 0.45. These functional
shapes were then used to generate the intermediate population
numerically using a homemade program. A single collision
turns out to be almost sufficient to mimic the full PDF of
v at different y positions. Including the second-generation
intermediate particles (population 4) gives a better fit.

.

.

FIG. 6. Velocity PDFs: experimental data and the model for
two different y positions. Green lines are fits with first-generation
intermediate particles, and red lines with first- and second-generation
intermediate particles. In order to improve visibility, the PDF for
y/λ = 0.26 is rescaled by a factor 1/30. (e = 1.5 mm, φ∗

1 = 0.007,
V1 = 1.1 m/s, and M ∼ 30).

The values of φ3(y) and φ4(y) needed to fit the distributions
in Fig. 6 are small, of the order of φ∗

1 , compared to φtot (see
Fig. 3 and inset of Fig. 3), which increases up to 30φ∗

1 . Also,
these values, shown as the solid symbols in Fig. 3, agree
well with the measured φ3(y) and φ4(y), already discussed
in Fig. 3 above, giving an a posteriori justification of our
simple model and the different hypotheses used notably
that the distribution of the intermediate populations can be
approximated by that just after collision. Note here that
despite the fact that our experimental system is quasi-two-
dimensional, three-dimensional effects have to be considered
carefully as shown in Appendix B.

IV. APPLICATION TO SHOCK WAVES IN A VIBRATED
GRANULAR GAS AND IN MOLECULAR GASES

A. The vibrated granular gas

In this section we extend the above analysis to probe the
structure of the velocity distributions in another setup where
shock waves are obtained in a vibrated granular gas. Here,
a homogeneous granular gas is obtained with steel beads
(diameter d = 1 mm) enclosed in a thin horizontal cell (36 ×
21 × 0.3 cm) vibrated vertically using an electromagnetic
shaker with frequencies ranging from 28 to 46 Hz and an
acceleration between 1.5 and 4 g. With a vibration amplitude of
1 mm, we obtain an homogeneous granular gas with a volume
fraction φbath, which can be varied from 7% to 14% [38].
The cell consists of a lower anodized aluminium plate, an
upper glass plate, and aluminium spacers of 3-mm thickness.
A rectangular obstacle, with 7-cm width and 3-mm thickness,
is translated at a constant speed in the granular gas as shown
in Fig. 7(a). At speeds greater than ∼10 cm/s, corresponding
to the speed of sound in the granular gas, a normal shock wave
is generated: beads accumulate, form dense layers near the
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FIG. 7. (a) Photographs of the displacement of a rectangular
obstacle (with a velocity Vobs = 80 cm/s) in a vibrated granular
gas for φ∗

1 ∼ 0.07 and Ma ∼ 8. The photographs are taken using
reflection from a broad white light source. The contrast is increased
to highlight the steel beads. The photographs show the accumulation
of particles in the shock front induced by the displacement of the
obstacle, which appears light gray in the left part of the image. The
obstacle moves from left to right. In the reference frame of the shock
front, the supersonic stream is from right to left. (b) Volume fraction
profile φtot with PDFs of particle velocities in the reference frame
of the shock front, in the three different regions shown in the insets,
in a vibrated granular gas for φ∗

1 ∼ 0.07 and Ma ∼ 8. The particle
density is large near the obstacle and decreases as the distance to the
obstacle increases. Note that this profile is only plotted in the area
where the volume fraction does not reach the maximum value near
φMAX, the random close-packing volume fraction. The photograph
shows a zoom of the shock front in the vibrated granular gas.

obstacle, and a well-defined shock front ensues [see Fig. 7(a)].
The rectangular shape of the obstacle used allows only a weak
transverse flow so that the flow has a quasi-one-dimensional
structure with the shock front normal to the flow direction.
The shock propagates with a constant speed Vfront. In the

reference frame of the shock front, the supersonic population
is the vibrated gas far from the obstacle which has a velocity
V1 = −Vfront. The main interest of this setup is to generate
granular shock fronts in a different geometry and with a
range of Mach numbers lower than the above experiments
and typically between 4 and 20. The combination of the
two experiments thus allows to explore Mach number effects
between for 4 and 60.

Figure 7(b) shows the main features of the shock front in
this configuration. Note that the total volume fraction is low
far from the obstacle and increases rapidly near the shock front
to reach values near 0.5 in the vicinity of the obstacle as has
been observed in previous experiments of shock formation in
granular gases. Here, the volume fraction was extracted from
images of the top layer and corrected for three-dimensional
effects using mass conservation as explained in Appendix B.
The velocity distributions obtained far from the obstacle show
a sharp peak indicative of the supersonic population. The
distributions become wider and centered at a smaller value
near zero in the vicinity of the obstacle, indicating the presence
of the subsonic population. In the front region, however,
the distribution looks bimodal and has the signature of the
presence of intermediate velocity particles as discussed above
and shown in the insets of Fig. 7(b).

The results described in the previous sections of this paper
show that the velocity distributions can be well described by a
simple model invoking the coexistence of at least three popu-
lations in the shock front: a supersonic population, a subsonic
population, and a population of first-generation intermediate
particles (population 3) coming from single collisions between
these two populations. A better description is obtained with
a four-population model, but a three-population model is a
relatively good approximation as shown in Fig. 6. While in
the above experiments using gravity-driven flow around a
circular obstacle it was possible to track particles, analyze their
collisions, and therefore extract each population separately, it
was not possible to directly obtain the velocity distributions
and the volume fractions of each population in the vibrated
granular gas experiment. Nonetheless, a similar analysis using
three populations can be carried out.

In order to analyze these distributions using the model de-
tailed above, we need to obtain the velocity distributions of the
supersonic and subsonic populations. The velocity distribution
of the supersonic population is obtained from the peak at the
incident velocity. The functional shape of this distribution is
assumed similar to that far away from the obstacle and can
be fit to exp(−[u2/v2

0,1 + (v − V1)2/v2
0,1 + w2/v2

0,1]
η
). Here

again and as in the previous experiment, the values of v0,1

and η do not change as the distance to the obstacle varies. The
value of η does not depend on the Mach number and is near 0.8;
the value of v0,1, on the other hand, depends on the vibration
parameters. The velocity distribution of the component along
the flow direction v of subsonic particles is obtained from
the PDFs of u with the supersonic particles subtracted. This
subtraction consists of removing particles with velocities v

greater than a threshold value typically chosen between 0.7
and 0.9 times V1 depending on the Mach number. The shape
of the PDFs of u did not depend markedly on the exact value
of this threshold. We cannot subtract population 3 as it is
not known, but in the example above this subtraction does
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not affect the distribution measurably (see Figs. 4 and 5).
As explained above, the velocity distributions of u and v are
roughly similar for the subsonic population as the subtraction
of particles having experienced a few collisions seems to
remove the influence of the intermediate particles as shown
in Figs. 4 and 5. Note that the mean velocity of the subsonic
population V2 is not known and is taken as an additional
adjustable parameter along with the amplitudes of the PDFs
of the supersonic, the subsonic, and the intermediate particles.
We include V2 in the fit procedure by generating the velocity
distributions for a wide range of subsonic mean velocities
and the best agreement with experimental measurements is
chosen. The PDF of the subsonic population is again fit (for
convenience in the numerical calculation) to the functional
shape exp(−[u2/v2

0,2 + (v − V2)2/v2
0,2 + w2/v2

0,2]
η
), the value

of η turns out to be 0.8, while the value of v0,2 depends
on the Mach number and the position along the shock.
Knowing the PDF shape of the supersonic particles and
the subsonic particles, the first generation of intermediate
particles (population 3) are numerically generated. These
three subpopulations are sufficient to fit the full PDF of v

as shown in Fig. 8 for different Mach numbers and positions
along the shock front. This figure shows the experimental data
along with a fit to our model as well as the PDFs of the
different populations present. The good agreement between
our model and experimental results shows again that the
assumptions used are reasonable and that the origin of the
intermediate population is single collisions between the two
streams independently of the experimental setup used.

B. Molecular gases

Here, we go further and show that our proposed analysis
and model can be extended to shocks in other systems and
notably to shocks in molecular gases. As we have mentioned in
the Introduction, measurements of the velocity distributions in
molecular gases show the presence of a substantial proportion
of particles with intermediate velocities and which are not
described correctly by using a 2 population model. We here
examine whether a three population model as proposed above
for granular shocks can be applied to this case. In order to

FIG. 8. Experimental PDFs of v for (a) φ1/φ
∗
1 = 0.45 and

(b) φ1/φ
∗
1 = 0.27 in the vibrated granular gas at Ma = 6 with the

decomposition into the supersonic particles, the subsonic particles,
and the intermediate particles. (c), (d) the same at Ma = 14. Note that
the subsonic population PDF has a peak at a nonzero velocity given
by V2.

do so, we carry out a similar analysis of velocity distributions
obtained from experimental [5,6] and numerical studies [27]
on shock waves in gases. In molecular gases, we assume that
the supersonic particles have Gaussian velocity distributions
with known temperature T1 and mean velocity V1 but that the
subsonic particles have Gaussian velocity distributions with
unknown temperature T2 and mean velocity V2. Linking these
two parameters is necessary to generate velocity distributions
of intermediate particles. We first use the Euler equations in
molecular gases with supersonic, subsonic, and intermediate
particles (respectively, noted 1, 2, and 3) to obtain

ρ1V1 + ρ2V2 + ρ3V3 = ρ∗
1V1,

ρ1

(
V 2

1 + k

m
T1

)
+ ρ2

(
V 2

2 + k

m
T2

)
+ ρ3

(
V 2

3 + k

m
T3

)
= ρ∗

1

(
V 2

1 + k

m
T1

)
,

ρ1V1

(
V 2

1 + (n + 2)
k

m
T1

)
+ ρ2V2

(
V 2

2 + (n + 2)
k

m
T2

)
+ ρ3V3

(
V 2

3 + (n + 2)
k

m
T3

)
= ρ∗

1V1

(
V 2

1 + (n + 2)
k

m
T1

)
.

These equations and the following equations V3 =
V1+V2

2 , T3 = T1+T2
2 + m(V1−V2)2

4nk
, which are the equivalent of

Eqs. (14) for molecular gases, impose a relation between the
temperature T2 and mean velocity V2 of subsonic particles.
We have then used the assumptions explained above to gen-
erate the PDFs of the subsonic and supersonic populations
from the measured PDFs and used them to calculate the PDF
of the intermediate particles (for molecular gases we use r = 0

and μ = 0). The adjustable parameters are the amplitudes of
the PDFs and the value of V2.

We find that the first generation intermediate particles are
sufficient to fit the full velocity PDF in gases for different
positions in the shock front as well as different Mach numbers
as shown in Fig. 9. Here data has been extracted from
experiments as well as numerical simulations, which are both
well modeled by our analysis, suggesting that single collisions
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FIG. 9. (a), (b) Experimental measurements from Ref. [6] for
φ1/φ

∗
1 = 0.46 and φ1/φ

∗
1 = 0.13 at M = 25 with the PDFs from

Mott-Smith theory and our three-population model. (c), (d) The same
from Ref. [5] at Ma = 7.18. (e), (f) The same from Ref. [27] at
Ma = 9. Note that the subsonic population PDF has a peak at a
nonzero velocity given by V2.

between the supersonic and subsonic streams are sufficient
to account for the intermediate population. Our model allows
a much better agreement with experimental data as well as
data obtained in numerical simulations than the distributions
with only two populations considered in the Mott-Smith
theory.

V. CONCLUSION

In the present paper, we have attempted to model the
probability distribution functions of the velocity across a
shock front. We have used a model system consisting of a
granular gas flowing past an obstacle to illustrate that the key
to understanding these distributions is the role of collisions
in generating intermediate velocities. Previous models of the
shock front which split the contributions to the velocity distri-
bution into two main contributions coming from a supersonic
stream and a subsonic stream turn out to be incomplete. A
substantial portion of the measured velocities emanates from
contributions not represented by these two streams alone.
Our experiments and the focus on particle collisions in the
shock front show that these two streams interact with each
other as expected and generate particles with intermediate

velocities. These experiments also show that these particles are
for the most part produced by single binary collisions between
the two streams. Taking into account the contribution of
second generation intermediate particles emanating from the
collisions between the first generation intermediate particles
and the subsonic stream turns out to give better agreement
with measured velocity distributions but their importance is
minor. We have proposed a simple model to calculate the
contribution of these intermediate particles to the velocity
distributions which conforts these observations. This simple
model relies on the measured PDFs to extract the contribution
of the two primary streams (the subsonic and supersonic one)
and uses this information to generate the missing intermediate
population by calculating the effects of binary collisions
between the two main streams on the velocity PDF. This
analysis has been shown to work reasonably well for granular
shocks around an obstacle where this procedure is validated by
direct measurements of the intermediate populations through
particle tracking. It has also been used to explain the velocity
distributions in two other cases, shocks in vibrated granular
gases and shocks in molecular gases, for which it is not
possible to measure the contribution of intermediate particles
directly. In both of these latter cases, the contribution of a
single additional population of intermediate particles turns out
to be sufficient to reproduce the shape of the full velocity
profile. This additional population is obtained by calculating
the result of single binary collisions between the two main
streams. In the absence of a model for the full distribution, our
semiempirical attempt is one of the few to give very reasonable
agreement with measured velocity PDFs across a shock front
in different systems. Further, and since only a few collisions
are sufficient to capture the full PDF, our insight may be useful
in constructing approximate models.

To summarize, from shock waves induced in granular gases
for two different setups, we propose a new description for
the velocity distributions, which consists of a superposition
of an incident supersonic stream, a subsonic stream, and
a third intermediate state. This intermediate state consists
mostly of particles having experienced one or two collisions
only rendering the prediction of the full velocity distribution
relatively simple. This analysis is applied to dilute granular
shocks as well as shocks in gases.
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APPENDIX A: CALCULATION OF THE VOLUME
FRACTION AND VELOCITY DISTRIBUTION OF

SECOND-GENERATION INTERMEDIATE PARTICLES

At positions deeper in the shock front, it can be necessary
to take into account second-generation intermediate particles.
The model can be extended to include four sub-populations:
supersonic, subsonic, first-, and second-generation intermedi-
ate particles, respectively noted with index i of 1, 2, 3, and 4.
First-generation intermediate particles arise from a collision
between supersonic and subsonic particles as previously
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explained. The difference is that they become second-
generation intermediate particles after a second collision with
existing subsonic particles and turn into subsonic particles after
a third collision. Appearance and disappearance processes can
be described by the following equations:

∂(φ1V1)

∂y
= −J12, (A1)

∂(φ2V2)

∂y
= −J12 − J32 + J42, (A2)

∂(φ3V3)

∂y
= 2J12 − J32, (A3)

∂(φ4V4)

∂y
= 2J32 − J42. (A4)

Because of momentum and energy conservation, the mean
velocity and the temperature of intermediate particles (1) and
(2) can be expressed

V3 = V1 + V2

2
T3 = T1 + T2

2
+ (V1 − V2)2

4N
, (A5)

V4 = V3 + V2

2
T4 = T3 + T2

2
+ (V3 − V2)2

4N
. (A6)

The volume fraction of first-generation intermediate particles
is again obtained from Eq. (18) and the expression in Eq. (19).
From Eqs. (A1), (A2), (A4), and (8), the volume fraction of
second-generation intermediate particles can be obtained from

∂(φ4v4)

∂(φ1v1)
= −4 − 2

∂(φ3v3)

∂(φ1v1)
+ φ4

φ1

v4 − v2

v1 − v2

A42

A12

= −A32

A12

φ3

φ1
+ 1

4

A42

A12

φ4

φ1
. (A7)

The volume fraction of the first-generation intermediate
particles is again given by Eq. (19), and we can express
the volume fraction of the second-generation intermediate
particles as

φ3 = K1φ
∗
1

[
φ1

φ∗
1

−
(

φ1

φ∗
1

)α]
, K−1

1 = 1

2

V3

V1
(α − 1),

α = 1

2

A32

A12

V1

V3
,

φ4 = K2φ
∗
1

[ φ1

φ∗
1

− (
φ1

φ∗
1

)β

β − 1
+

(
φ1

φ∗
1

)β − (
φ1

φ∗
1

)α

β − α

]
,

K−1
2 = 1

4

V4

V1

(α − 1)

α
, β = 1

4

A42

A12

V1

V4
. (A8)

These two expressions are used in Fig. 3 of the main text with
corrections due to the two-dimensional nature of the gravity
driven granular flow around the circular obstacle.

Let us describe the procedure to obtain the velocity PDF of
the first-generation intermediate particles PDF3(→c ). Consider
a shock between a supersonic particle and a subsonic particle
with a velocity →

c1 and →
c2 , respectively, and an impact

point (x1,y1,z1) with the constraint
√

x2
1 + y2

1 + z2
1 = d/2

and with a uniform probability p in the plane (x1,z1). The
center of the subsonic particle is at (0,0,0). With the im-
pact point, we can calculate →

en ∼ (x→
ex + y

→
ey + z

→
ez ), →

et ∼

[(→c1 − →
c2 ) × →

en ] × →
en , and the velocity of both intermediate

particles after the shock with a velocity denoted →
c3 = →

C1 or→
C2 (see the collision rules, Sec. III C). The values of →

c1 , →
c2 ,

and (x1,z1) are randomly generated. Each calculated velocity→
c3 for each impact position contributes to the PDF of the ve-
locity of the first-generation intermediate particles PDF3(→c )
with a weight given by PDF1(→c1 )PDF2(→c2 )p/2|→c1 − →

c2 |.
For the granular gas, collisions are inelastic, and
PDF1(→c ) and PDF2(→c ) (for the supersonic and sub-
sonic populations respectively) are obtained from experi-
mental measurements as detailed in the text (PDFi(

→
c ) =

exp(−[u2/v2
0,i + (v − Vi)2/v2

0,i + w2/v2
0,i]

η
), i = 1,2, η <

1). For molecular gases, collisions are elastic (the collisions
rules are used with r = 1 and μ = 0) and PDF1(→c ) and
PDF2(→c ) are assumed Gaussian (PDFi(

→
c ) = exp(−m(→c −

Vi
→
ey )2/2kTi), i = 1,2). The PDF3(→c ) of intermediate parti-

cles 3 is then obtained numerically using 106 trials.
Note that the velocity components u, v, and w of the

supersonic particles are assumed to have the same PDF shapes
and widths but not the same mean values while the u, v, and w

components of the subsonic stream have equivalent PDFs. This
has been tested experimentally for the flow around an obstacle
as well as the granular gas but is assumed for the molecular
gases. A major assumption used here is that the first-generation
intermediate particle distribution can be approximated by that
obtained just after collision, which amounts to neglecting the
effect of advection and disappearance of these particles. While
this has been tested in the flow around an obstacle where a
reasonable agreement was found between the intermediate
population calculated using this assumption and the full
population, we have used this assumption without justification
for the vibrated granular gas as well as molecular gases. The
good agreement found a posteriori conforts us in the use of this
assumption, which renders the calculation possible. Without
this assumption, it is very difficult to estimate the PDFs of this
population.

The procedure to calculate velocities of the second-
generation intermediate particles is similar to the procedure
to generate the velocities of the first generation intermediate
particles, except that the velocity distribution of supersonic
particles is replaced by the velocity distribution of the first
generation intermediate particles.

APPENDIX B: INFLUENCE OF THE THIRD DIMENSION

Although the experiments presented in this work are quasi-
two-dimensional, the particle motion is three-dimensional. For
gases, the experiments are three-dimensional. In this latter
case, the velocity distributions along the z axis are assumed
to be those following the x axis, which is justified by the
symmetry of the flows. For the granular experiments presented
in this work, the xz symmetry is broken by the presence of the
walls. So it raises the question of particle motion in the third
dimension and its influence. In our experiments, the movement
of particles along the z axis was measured and its contribution
was included in the description.

We quote below a number of problems posed by the pres-
ence of walls and the solutions we have brought to resolve these
issues in the context of the analysis presented in this work.
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1. The determination of the volume fraction

In the granular horizontal flow experiment, imaging does
not allow us to detect all the particles leading to an underes-
timation of the local volume fraction of the granular flow. We
obtain the true volume fraction φtot using the following pro-
cedure: When the obstacle starts moving, the detected density
profiles show rapidly a translation invariance. In the reference
frame of the shock front, the flow is stationary. Stationary of
the flow allows us to obtain the true volume fraction by the
following conservation equation: ∂

∂y
(φtotV ) + φtot

∂
∂x

(U ) = 0,

where V and U are the measured mean velocities along the
propagation axis y and the transverse x axis respectively in
the reference frame of the shock front. φtot can be obtained
numerically from the following expression:

φtot(y) = φ∗
1 exp

(∫ +∞

y

[
∂V

∂y
+ ∂U

∂x

]
dy

V

)

2. Particle motion in the third dimension

We have access to the movement of particles in the z

direction by two experimental methods. The first method is
to film the granular flows at an angle θ = 50◦ relative to the
z axis, which gives access to particle movement and velocity
distributions in the direction cos(θ )→ex + sin(θ )→ez . Velocity
distributions along →

ex are known so the velocity distributions
along →

ez can be estimated by deconvolution. The second
method is to slightly defocus the camera (with θ = 0). Then
the intensity of the reflection from the particle varies with z. By
calibrating this intensity versus z, this method gives access to
the position of the particle along z. Using this second method,
we have access to positions of particles in the three spatial
directions. However, it is less accurate along z. This analysis
also shows that the particles have many collisions with the
walls. The influence of these walls will be discussed below.

Particle motion along z is different in the two granular
experiments discussed in this paper. For the vertical flow
experiment, the velocity distribution for all particles along
z is very similar to that obtained along x. As the form of these
distributions is mainly determined by the population of sub-
sonic particles, it can be concluded that the subsonic particles
have isotropic distributions along the three spatial directions.

For the horizontal flow experiment, the movement along z

is very different. All particles (in the bath or in the shock front)
have a sinusoidal movement very close to the vibrated walls.
In the bath, velocity distributions along z (having removed
the sinusoidal motion) are wider than those obtained along x

(typically 40%). This is much less significant in the shock front

and it can be argued that the subsonic particles have almost
identical agitation in the three spatial directions.

Although collisions with the walls are very dissipative, ve-
locity distributions of subsonic particles are broadly isotropic.
Presumably the collisions between particles distribute energy
evenly between the different spatial degrees of freedom.

3. The influence of the walls on the velocity distributions
of intermediate particles

The preceding analysis is silent on the intermediate parti-
cles. And in fact, the presence of the walls has an influence
on the velocity distribution of first-generation intermediate
particles. This influence is understood and is included in the
description for the vertical experiment. The major effect of the
walls is to confine the particles. The main observation is that the
velocity distributions of first-generation intermediate particles
depend on the distance between the walls. The explanation is
the following: The impact parameter is spatially limited by
the presence of the walls. In fact, in the numerical calculation
of velocity distributions of intermediate particles, we include
this effect by limiting spatially the positions of particles at
impact. This method allows us to reproduce the evolution of
the velocity distributions as a function of the distance between
walls. It is noteworthy that this effect is relatively small for
e > 2d, but it has a significant role for e = 1.5d.

Consider a first-generation intermediate particle, it may col-
lide with the walls while remaining intermediate, that is to say,
it did not collide with another particle. However, the velocity
of this intermediate particle changes during its propagation.
This is detectable on the trajectories. The consequence for the
description is that the velocity distributions of the intermediate
particles at a given position in the shock wave are not quite
similar to those measured immediately after impact (Fig. 4).
In the analysis (Figs. 5 and 6), the results are slightly better by
using the full measured distributions instead of the calculated
distributions right after impact.

This analysis could not be made for the horizontal flow
experiment since we have no direct access to intermediate
particles. For supersonic particles (bath), it was noted that
the velocity distributions along z are wider, which should
have an influence on the determination of the intermediate
particles. We tested numerically the influence of the width of
this distribution in the determinations of the distribution of
these intermediate particles. This influence is weak, the shape
of the distributions of intermediate particles is essentially
determined by the eventual confinement and average speeds
of each population.
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