211 research outputs found

    Investigating geographic and temporal genetic variation in the black grouse (Lyrurus tetrix) in the Italian Alps

    Get PDF
    The black grouse (Lyrurus tetrix) is a Galliform distributed across northern Eurasia, and is a game bird in most EU countries. Although the species is listed as ‘Least Concern’ by the IUCN, populations at the western and southern edges of its range are considered ‘Vulnerable’ due to increasing habitat fragmentation and human disturbance. Between 1995 and 2017, in collaboration with several hunting associations, we collected more than 600 black grouse samples across seven regions of the Italian Alps. Ten microsatellite markers (STRs) and 2442 Single Nucleotide Polymorphisms (SNPs) were analysed in large subsets of the collected data, with the aim of identifying environmental, temporal and anthropic factors that affect the distribution and level of genomic variation. The main factor shaping the genetic distances between populations based on STRs is the geographic distance between them (i.e. isolation-bydistance), but even the populations on the two extremes of our sampling area are very similar (Fst between the two regions = 0.053). SNP data supports the STR analysis. However, isolation-by-resistance methods for the larger STR data set show that both higher altitudes and urban areas inhibit movement of grouse between populations. While temporal analysis of STRs for the Trentino-Alto Adige region showed no significant change in the mean number of alleles and allelic size range between the two time frames studied (e.g. mean number of alleles 1995-1999: 8.8, 2009-2010: 8.2), and the expected heterozygosity was high in both time frames (1995-1999: 0.740, 2009-2010: 0.722). While black grouse population size is reportedly decreasing, our results suggest there is no measurable genetic impact from this trend. Hence this dataset provides a basis for future monitoring of genetic diversity in this charismatic alpine species

    Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene

    Get PDF
    A large body of evidence strongly suggests that the p53 tumor suppressor pathway is central in reducing cancer frequency in vertebrates. The protein product of the haploinsufficient mouse double minute 2 (MDM2) oncogene binds to and inhibits the p53 protein. Recent studies of human genetic variants in p53 and MDM2 have shown that single nucleotide polymorphisms (SNPs) can affect p53 signaling, confer cancer risk, and suggest that the pathway is under evolutionary selective pressure (1–4). In this report, we analyze the haplotype structure of MDM4, a structural homolog of MDM2, in several different human populations. Unusual patterns of linkage disequilibrium (LD) in the haplotype distribution of MDM4 indicate the presence of candidate SNPs that may also modify the efficacy of the p53 pathway. Association studies in 5 different patient populations reveal that these SNPs in MDM4 confer an increased risk for, or early onset of, human breast and ovarian cancers in Ashkenazi Jewish and European cohorts, respectively. This report not only implicates MDM4 as a key regulator of tumorigenesis in the human breast and ovary, but also exploits for the first time evolutionary driven linkage disequilibrium as a means to select SNPs of p53 pathway genes that might be clinically relevant

    Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene

    Get PDF
    A large body of evidence strongly suggests that the p53 tumor suppressor pathway is central in reducing cancer frequency in vertebrates. The protein product of the haploinsufficient mouse double minute 2 (MDM2) oncogene binds to and inhibits the p53 protein. Recent studies of human genetic variants in p53 and MDM2 have shown that single nucleotide polymorphisms (SNPs) can affect p53 signaling, confer cancer risk, and suggest that the pathway is under evolutionary selective pressure (1–4). In this report, we analyze the haplotype structure of MDM4, a structural homolog of MDM2, in several different human populations. Unusual patterns of linkage disequilibrium (LD) in the haplotype distribution of MDM4 indicate the presence of candidate SNPs that may also modify the efficacy of the p53 pathway. Association studies in 5 different patient populations reveal that these SNPs in MDM4 confer an increased risk for, or early onset of, human breast and ovarian cancers in Ashkenazi Jewish and European cohorts, respectively. This report not only implicates MDM4 as a key regulator of tumorigenesis in the human breast and ovary, but also exploits for the first time evolutionary driven linkage disequilibrium as a means to select SNPs of p53 pathway genes that might be clinically relevant

    Definition of the Prognostic Role of MGMT Promoter Methylation Value by Pyrosequencing in Newly Diagnosed IDH Wild‐Type Glioblastoma Patients Treated with Radiochemotherapy: A Large Multicenter Study

    Get PDF
    Background. O6‐methylguanine (O6‐MeG)‐DNA methyltransferase (MGMT) methylation status is a predictive factor for alkylating treatment efficacy in glioblastoma patients, but its prognostic role is still unclear. We performed a large, multicenter study to evaluate the association between MGMT methylation value and survival. Methods. We evaluated glioblastoma patients with an assessment of MGMT methylation status by pyrosequencing from nine Italian centers. The inclusion criteria were histological diagnosis of IDH wild‐type glioblastoma, Eastern Cooperative Oncology Group Performance Status (ECOG‐PS) ≤2, and radio‐chemotherapy treatment with temozolomide. The relationship between OS and MGMT was investigated with a time‐dependent Receiver Operating Characteristics (ROC) curve and Cox regression models. Results. In total, 591 newly diagnosed glioblastoma patients were analyzed. The median OS was 16.2 months. The ROC analysis suggested a cut‐off of 15% for MGMT methylation. The 2‐year Overall Survival (OS) was 18.3% and 51.8% for MGMT methylation <15% and ≥15% (p < 0.0001). In the multivariable analysis, MGMT methylation <15% was associated with impaired survival (p <0.00001). However, we also found a non‐linear association between MGMT methylation and OS (p = 0.002): median OS was 14.8 months for MGMT in 0–4%, 18.9 months for MGMT in 4–40%, and 29.9 months for MGMT in 40– 100%. Conclusions. Our findings suggested a non‐linear relationship between OS and MGMT promoter methylation, which implies a varying magnitude of prognostic effect across values of MGMT promoter methylation by pyrosequencing in newly diagnosed IDH wild‐type glioblastoma patients treated with chemoradiotherapy

    BCR::ABL1 levels at first month after TKI discontinuation predict subsequent maintenance of treatment-free remission: A study from the “GRUPPO TRIVENETO LMC”

    Get PDF
    We analyzed BCR::ABL1 expression at stop and in the first month after discontinuation in 168 chronic myeloid leukemia patients who stopped imatinib or 2nd generation tyrosine kinase inhibitors (2G-TKIs) while in sustained deep molecular response. Patients were divided among those who maintained response (group 1, n = 123) and those who lost major molecular response (group 2, n = 45). Mean BCR::ABL1 RNA levels 1 month after discontinuation were higher in group 2 than in group 1 (p = 0.0005) and the difference was more evident 2 months after stop (p < 0.0001). The same trend was found both for imatinib and 2G-TKIs. A receiver operating characteristic (ROC) analysis to determine a threshold value of BCR::ABL1 at 1 month after discontinuation identified a cut-off value of 0.0051%, with 92.2% specificity, 31.7% sensitivity and a likelihood ratio of 4.087

    Zwitterion functionalized gold nanoclusters for multimodal near infrared fluorescence and photoacoustic imaging

    Get PDF
    Gold nanoclusters (Au NCs) are an emerging type of theranostic agents combining therapeutic and imaging features with reduced toxicity. Au NCs stabilized by a zwitterion ligand with a fine control of the metal core size and the ligand coverage were synthesized by wet chemistry. Intense fluorescence signal is reported for the highest ligand coverage, whereas photoacoustic signal is stronger for the largest metal core. The best Au NC candidate with an average molecular weight of 17 kDa could be detected with high sensitivity on a 2D-near-infrared imaging instrument (limit of detection (LOD) = 2.3 μM μM ) and by photoacoustic imaging. In vitro and in vivo experiments demonstrate an efficient cell uptake in U87 cell lines, a fast renal clearance (t 1/2α t1/2α = 6.5 ± 1.3 min), and a good correlation between near infrared fluorescence and photoacoustic measurements to follow the early uptake of Au NCs in liver

    Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility

    Get PDF
    Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol) ethyl ether methacrylate-co-poly(ethylene glycol) methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly-N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth) even at high iron concentrations (6 mM), indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA) approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury

    Nanoparticle Induced Cell Magneto-Rotation: Monitoring Morphology, Stress and Drug Sensitivity of a Suspended Single Cancer Cell

    Get PDF
    Single cell analysis has allowed critical discoveries in drug testing, immunobiology and stem cell research. In addition, a change from two to three dimensional growth conditions radically affects cell behavior. This already resulted in new observations on gene expression and communication networks and in better predictions of cell responses to their environment. However, it is still difficult to study the size and shape of single cells that are freely suspended, where morphological changes are highly significant. Described here is a new method for quantitative real time monitoring of cell size and morphology, on single live suspended cancer cells, unconfined in three dimensions. The precision is comparable to that of the best optical microscopes, but, in contrast, there is no need for confining the cell to the imaging plane. The here first introduced cell magnetorotation (CM) method is made possible by nanoparticle induced cell magnetization. By using a rotating magnetic field, the magnetically labeled cell is actively rotated, and the rotational period is measured in real-time. A change in morphology induces a change in the rotational period of the suspended cell (e.g. when the cell gets bigger it rotates slower). The ability to monitor, in real time, cell swelling or death, at the single cell level, is demonstrated. This method could thus be used for multiplexed real time single cell morphology analysis, with implications for drug testing, drug discovery, genomics and three-dimensional culturing

    Fluorescence Modified Chitosan-Coated Magnetic Nanoparticles for High-Efficient Cellular Imaging

    Get PDF
    Labeling of cells with nanoparticles for living detection is of interest to various biomedical applications. In this study, novel fluorescent/magnetic nanoparticles were prepared and used in high-efficient cellular imaging. The nanoparticles coated with the modified chitosan possessed a magnetic oxide core and a covalently attached fluorescent dye. We evaluated the feasibility and efficiency in labeling cancer cells (SMMC-7721) with the nanoparticles. The nanoparticles exhibited a high affinity to cells, which was demonstrated by flow cytometry and magnetic resonance imaging. The results showed that cell-labeling efficiency of the nanoparticles was dependent on the incubation time and nanoparticles’ concentration. The minimum detected number of labeled cells was around 104by using a clinical 1.5-T MRI imager. Fluorescence and transmission electron microscopy instruments were used to monitor the localization patterns of the magnetic nanoparticles in cells. These new magneto-fluorescent nanoagents have demonstrated the potential for future medical use
    corecore