3,397 research outputs found

    On the emergence of random initial conditions in fluid limits

    Full text link
    The paper presents a phenomenon occurring in population processes that start near zero and have large carrying capacity. By the classical result of Kurtz~(1970), such processes, normalized by the carrying capacity, converge on finite intervals to the solutions of ordinary differential equations, also known as the fluid limit. When the initial population is small relative to carrying capacity, this limit is trivial. Here we show that, viewed at suitably chosen times increasing to infinity, the process converges to the fluid limit, governed by the same dynamics, but with a random initial condition. This random initial condition is related to the martingale limit of an associated linear birth and death process

    A law of large numbers approximation for Markov population processes with countably many types

    Full text link
    When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since the population size has no natural upper limit, this leads to systems in which there are countably infinitely many possible types of individual. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove a law of large numbers for rather general systems of this kind, together with a rather sharp bound on the rate of convergence in an appropriately chosen weighted â„“1\ell_1 norm.Comment: revised version in response to referee comments, 34 page

    Einstein gravity as a 3D conformally invariant theory

    Get PDF
    We give an alternative description of the physical content of general relativity that does not require a Lorentz invariant spacetime. Instead, we find that gravity admits a dual description in terms of a theory where local size is irrelevant. The dual theory is invariant under foliation preserving 3-diffeomorphisms and 3D conformal transformations that preserve the 3-volume (for the spatially compact case). Locally, this symmetry is identical to that of Horava-Lifshitz gravity in the high energy limit but our theory is equivalent to Einstein gravity. Specifically, we find that the solutions of general relativity, in a gauge where the spatial hypersurfaces have constant mean extrinsic curvature, can be mapped to solutions of a particular gauge fixing of the dual theory. Moreover, this duality is not accidental. We provide a general geometric picture for our procedure that allows us to trade foliation invariance for conformal invariance. The dual theory provides a new proposal for the theory space of quantum gravity.Comment: 27 pages. Published version (minor changes and corrections

    Finite Density Fat QCD

    Get PDF
    Lattice formulation of Finite Baryon Density QCD is problematic from computer simulation point of view; it is well known that for light quark masses the reconstructed partition function fails to be positive in a wide region of parameter space. For large bare quark masses, instead, it is possible to obtain more sensible results; problems are still present but restricted to a small region. We present evidence for a saturation transition independent from the gauge coupling β\beta and for a transition line that, starting from the temperature critical point at μ=0\mu=0, moves towards smaller β\beta with increasing μ\mu as expected from simplified phenomenological arguments.Comment: 14 pages, 10 figure

    \u3ci\u3eGNATHABELODON THORPEI\u3c/i\u3e, gen. et sp. nov. A new mud-grubbing Mastodon

    Get PDF
    In February, 1932, while opening a gravel pit to get material for highway construction, the skull, tusks, and mandible of a new longirostral mastodont were found by Robert Arnold on his ranch, Sec. 24, T. 12 S., R. 22 W., 1 1/2 miles due east of Ogallah, Trego County, western Kansas. This point is located about 20 miles west and three miles north of Hays, the seat of the Fort Hays Kansas State College, in the museum of which the above mentioned specimen is mounted and exhibited. When unexpectedly exposed by Mr. Arnold and his associates, the great skull was perfect, and had one tusk in place with the other lying near by. The mandible likewise was complete throughout. The skull, jaw, and tusks were of ivory whiteness, and of substantial outward appearance, and gave little warning of their fragile nature. While they were undermining this great skull it collapsed, and the fragments were lost, with the exception of the larger pieces, such as the palatine region with the upper molars, and the very base of the skull with both occipital condyles

    Quenched QCD at finite density

    Full text link
    Simulations of quenched QCDQCD at relatively small but {\it nonzero} chemical potential μ\mu on 32×16332 \times 16^3 lattices indicate that the nucleon screening mass decreases linearly as μ\mu increases predicting a critical chemical potential of one third the nucleon mass, mN/3m_N/3, by extrapolation. The meson spectrum does not change as μ\mu increases over the same range, from zero to mπ/2m_\pi/2. Past studies of quenched lattice QCD have suggested that there is phase transition at μ=mπ/2\mu = m_\pi/2. We provide alternative explanations for these results, and find a number of technical reasons why standard lattice simulation techniques suffer from greatly enhanced fluctuations and finite size effects for μ\mu ranging from mπ/2m_\pi/2 to mN/3m_N/3. We find evidence for such problems in our simulations, and suggest that they can be surmounted by improved measurement techniques.Comment: 23 pages, Revte

    Scale-Invariant Gravity: Geometrodynamics

    Get PDF
    We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t scaling developed in the parallel particle dynamics paper by one of the authors. In spatially-compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different.Comment: 33 pages. Published version (has very minor style changes due to changes in companion paper
    • …
    corecore