3,218 research outputs found

    Formation of Space-Time Structure in a Forest-Fire Model

    Full text link
    We present a general stochastic forest-fire model which shows a variety of different structures depending on the parameter values. The model contains three possible states per site (tree, burning tree, empty site) and three parameters (tree growth probability pp, lightning probability ff, and immunity gg). We review analytic and computer simulation results for a quasideterministic state with spiral-shaped fire fronts, for a percolation-like phase transition and a self-organized critical state. Possible applications to excitable systems are discussed.Comment: 20 pages REVTEX, 9 figures upon reques

    Money and Goldstone modes

    Full text link
    Why is ``worthless'' fiat money generally accepted as payment for goods and services? In equilibrium theory, the value of money is generally not determined: the number of equations is one less than the number of unknowns, so only relative prices are determined. In the language of mathematics, the equations are ``homogeneous of order one''. Using the language of physics, this represents a continuous ``Goldstone'' symmetry. However, the continuous symmetry is often broken by the dynamics of the system, thus fixing the value of the otherwise undetermined variable. In economics, the value of money is a strategic variable which each agent must determine at each transaction by estimating the effect of future interactions with other agents. This idea is illustrated by a simple network model of monopolistic vendors and buyers, with bounded rationality. We submit that dynamical, spontaneous symmetry breaking is the fundamental principle for fixing the value of money. Perhaps the continuous symmetry representing the lack of restoring force is also the fundamental reason for large fluctuations in stock markets.Comment: 7 pages, 3 figure

    Disorder-induced phase transition in a one-dimensional model of rice pile

    Full text link
    We propose a one-dimensional rice-pile model which connects the 1D BTW sandpile model (Phys. Rev. A 38, 364 (1988)) and the Oslo rice-pile model (Phys. Rev. lett. 77, 107 (1997)) in a continuous manner. We found that for a sufficiently large system, there is a sharp transition between the trivial critical behaviour of the 1D BTW model and the self-organized critical (SOC) behaviour. When there is SOC, the model belongs to a known universality class with the avalanche exponent τ=1.53\tau=1.53.Comment: 10 pages, 7 eps figure

    Different hierarchy of avalanches observed in the Bak-Sneppen evolution model

    Get PDF
    We introduce a new quantity, average fitness, into the Bak-Sneppen evolution model. Through the new quantity, a different hierarchy of avalanches is observed. The gap equation, in terms of the average fitness, is presented to describe the self-organization of the model. It is found that the critical value of the average fitness can be exactly obtained. Based on the simulations, two critical exponents, avalanche distribution and avalanche dimension, of the new avalanches are given.Comment: 5 pages, 3 figure

    Unified Scaling Law for Earthquakes

    Full text link
    We show that the distribution of waiting times between earthquakes occurring in California obeys a simple unified scaling law valid from tens of seconds to tens of years, see Eq. (1) and Fig. 4. The short time clustering, commonly referred to as aftershocks, is nothing but the short time limit of the general hierarchical properties of earthquakes. There is no unique operational way of distinguishing between main shocks and aftershocks. In the unified law, the Gutenberg-Richter b-value, the exponent -1 of the Omori law for aftershocks, and the fractal dimension d_f of earthquakes appear as critical indices.Comment: 4 pages, 4 figure

    Scaling of impact fragmentation near the critical point

    Full text link
    We investigated two-dimensional brittle fragmentation with a flat impact experimentally, focusing on the low impact energy region near the fragmentation-critical point. We found that the universality class of fragmentation transition disagreed with that of percolation. However, the weighted mean mass of the fragments could be scaled using the pseudo-control parameter multiplicity. The data for highly fragmented samples included a cumulative fragment mass distribution that clearly obeyed a power-law. The exponent of this power-law was 0.5 and it was independent of sample size. The fragment mass distributions in this regime seemed to collapse into a unified scaling function using weighted mean fragment mass scaling. We also examined the behavior of higher order moments of the fragment mass distributions, and obtained multi-scaling exponents that agreed with those of the simple biased cascade model.Comment: 6 pages, 6 figure

    Dynamic Critical approach to Self-Organized Criticality

    Full text link
    A dynamic scaling Ansatz for the approach to the Self-Organized Critical (SOC) regime is proposed and tested by means of extensive simulations applied to the Bak-Sneppen model (BS), which exhibits robust SOC behavior. Considering the short-time scaling behavior of the density of sites (ρ(t)\rho(t)) below the critical value, it is shown that i) starting the dynamics with configurations such that ρ(t=0)0\rho(t=0) \to 0 one observes an {\it initial increase} of the density with exponent θ=0.12(2)\theta = 0.12(2); ii) using initial configurations with ρ(t=0)1\rho(t=0) \to 1, the density decays with exponent δ=0.47(2)\delta = 0.47(2). It is also shown that he temporal autocorrelation decays with exponent Ca=0.35(2)C_a = 0.35(2). Using these, dynamically determined, critical exponents and suitable scaling relationships, all known exponents of the BS model can be obtained, e.g. the dynamical exponent z=2.10(5)z = 2.10(5), the mass dimension exponent D=2.42(5)D = 2.42(5), and the exponent of all returns of the activity τALL=0.39(2)\tau_{ALL} = 0.39(2), in excellent agreement with values already accepted and obtained within the SOC regime.Comment: Rapid Communication Physical Review E in press (4 pages, 5 figures

    A Self-Organized Method for Computing the Epidemic Threshold in Computer Networks

    Full text link
    In many cases, tainted information in a computer network can spread in a way similar to an epidemics in the human world. On the other had, information processing paths are often redundant, so a single infection occurrence can be easily "reabsorbed". Randomly checking the information with a central server is equivalent to lowering the infection probability but with a certain cost (for instance processing time), so it is important to quickly evaluate the epidemic threshold for each node. We present a method for getting such information without resorting to repeated simulations. As for human epidemics, the local information about the infection level (risk perception) can be an important factor, and we show that our method can be applied to this case, too. Finally, when the process to be monitored is more complex and includes "disruptive interference", one has to use actual simulations, which however can be carried out "in parallel" for many possible infection probabilities
    corecore