In many cases, tainted information in a computer network can spread in a way
similar to an epidemics in the human world. On the other had, information
processing paths are often redundant, so a single infection occurrence can be
easily "reabsorbed". Randomly checking the information with a central server is
equivalent to lowering the infection probability but with a certain cost (for
instance processing time), so it is important to quickly evaluate the epidemic
threshold for each node. We present a method for getting such information
without resorting to repeated simulations. As for human epidemics, the local
information about the infection level (risk perception) can be an important
factor, and we show that our method can be applied to this case, too. Finally,
when the process to be monitored is more complex and includes "disruptive
interference", one has to use actual simulations, which however can be carried
out "in parallel" for many possible infection probabilities