11,522 research outputs found

    A Damping of the de Haas-van Alphen Oscillations in the superconducting state

    Full text link
    Deploying a recently developed semiclassical theory of quasiparticles in the superconducting state we study the de Haas-van Alphen effect. We find that the oscillations have the same frequency as in the normal state but their amplitude is reduced. We find an analytic formulae for this damping which is due to tunnelling between semiclassical quasiparticle orbits comprising both particle-like and hole-like segments. The quantitative predictions of the theory are consistent with the available data.Comment: 7 pages, 5 figure

    Renormalized field theory and particle density profile in driven diffusive systems with open boundaries

    Full text link
    We investigate the density profile in a driven diffusive system caused by a plane particle source perpendicular to the driving force. Focussing on the case of critical bulk density cˉ\bar{c} we use a field theoretic renormalization group approach to calculate the density c(z)c(z) as a function of the distance from the particle source at first order in ϵ=2d\epsilon=2-d (dd: spatial dimension). For d=1d=1 we find reasonable agreement with the exact solution recently obtained for the asymmetric exclusion model. Logarithmic corrections to the mean field profile are computed for d=2d=2 with the result c(z)cˉz1(ln(z))2/3c(z)-\bar{c} \sim z^{-1} (\ln(z))^{2/3} for zz \rightarrow \infty.Comment: 32 pages, RevTex, 4 Postscript figures, to appear in Phys. Rev.

    Dynamic Simulations of the Kosterlitz-Thouless Phase Transition

    Full text link
    Based on the short-time dynamic scaling form, a novel dynamic approach is proposed to tackle numerically the Kosterlitz-Thouless phase transition. Taking the two-dimensional XY model as an example, the exponential divergence of the spatial correlation length, the transition temperature TKTT_{KT} and all critical exponents are computed. Compared with Monte Carlo simulations in equilibrium, we obtain data at temperatures nearer to TKTT_{KT}.Comment: to appear in Phys. Rev. E in Rapid Communicatio

    Field theory of absorbing phase transitions with a non-diffusive conserved field

    Get PDF
    We investigate the critical behavior of a reaction-diffusion system exhibiting a continuous absorbing-state phase transition. The reaction-diffusion system strictly conserves the total density of particles, represented as a non-diffusive conserved field, and allows an infinite number of absorbing configurations. Numerical results show that it belongs to a wide universality class that also includes stochastic sandpile models. We derive microscopically the field theory representing this universality class.Comment: 13 pages, 1 eps figure, RevTex styl

    Multifractal properties of resistor diode percolation

    Full text link
    Focusing on multifractal properties we investigate electric transport on random resistor diode networks at the phase transition between the non-percolating and the directed percolating phase. Building on first principles such as symmetries and relevance we derive a field theoretic Hamiltonian. Based on this Hamiltonian we determine the multifractal moments of the current distribution that are governed by a family of critical exponents {ψl}\{\psi_l \}. We calculate the family {ψl}\{\psi_l \} to two-loop order in a diagrammatic perturbation calculation augmented by renormalization group methods.Comment: 21 pages, 5 figures, to appear in Phys. Rev.

    Magnon delocalization in ferromagnetic chains with long-range correlated disorder

    Full text link
    We study one-magnon excitations in a random ferromagnetic Heisenberg chain with long-range correlations in the coupling constant distribution. By employing an exact diagonalization procedure, we compute the localization length of all one-magnon states within the band of allowed energies EE. The random distribution of coupling constants was assumed to have a power spectrum decaying as S(k)1/kαS(k)\propto 1/k^{\alpha}. We found that for α<1\alpha < 1, one-magnon excitations remain exponentially localized with the localization length ξ\xi diverging as 1/E. For α=1\alpha = 1 a faster divergence of ξ\xi is obtained. For any α>1\alpha > 1, a phase of delocalized magnons emerges at the bottom of the band. We characterize the scaling behavior of the localization length on all regimes and relate it with the scaling properties of the long-range correlated exchange coupling distribution.Comment: 7 Pages, 5 figures, to appear in Phys. Rev.

    On the definition of a unique effective temperature for non-equilibrium critical systems

    Full text link
    We consider the problem of the definition of an effective temperature via the long-time limit of the fluctuation-dissipation ratio (FDR) after a quench from the disordered state to the critical point of an O(N) model with dissipative dynamics. The scaling forms of the response and correlation functions of a generic observable are derived from the solutions of the corresponding Renormalization Group equations. We show that within the Gaussian approximation all the local observables have the same FDR, allowing for a definition of a unique effective temperature. This is no longer the case when fluctuations are taken into account beyond that approximation, as shown by a computation up to the first order in the epsilon-expansion for two quadratic observables. This implies that, contrarily to what often conjectured, a unique effective temperature can not be defined for this class of models.Comment: 32 pages, 5 figures. Minor changes, published versio

    Heuristic derivation of continuum kinetic equations from microscopic dynamics

    Full text link
    We present an approximate and heuristic scheme for the derivation of continuum kinetic equations from microscopic dynamics for stochastic, interacting systems. The method consists of a mean-field type, decoupled approximation of the master equation followed by the `naive' continuum limit. The Ising model and driven diffusive systems are used as illustrations. The equations derived are in agreement with other approaches, and consequences of the microscopic dependences of coarse-grained parameters compare favorably with exact or high-temperature expansions. The method is valuable when more systematic and rigorous approaches fail, and when microscopic inputs in the continuum theory are desirable.Comment: 7 pages, RevTeX, two-column, 4 PS figures include
    corecore