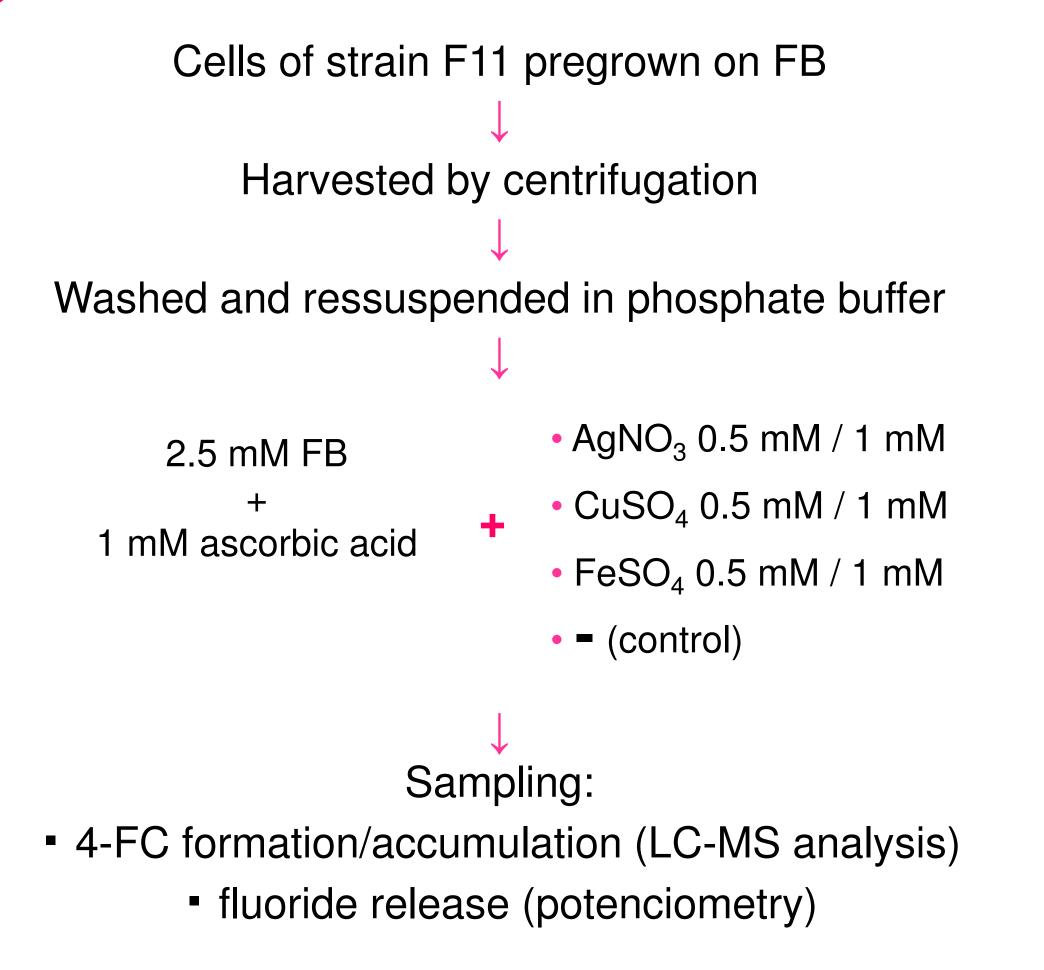


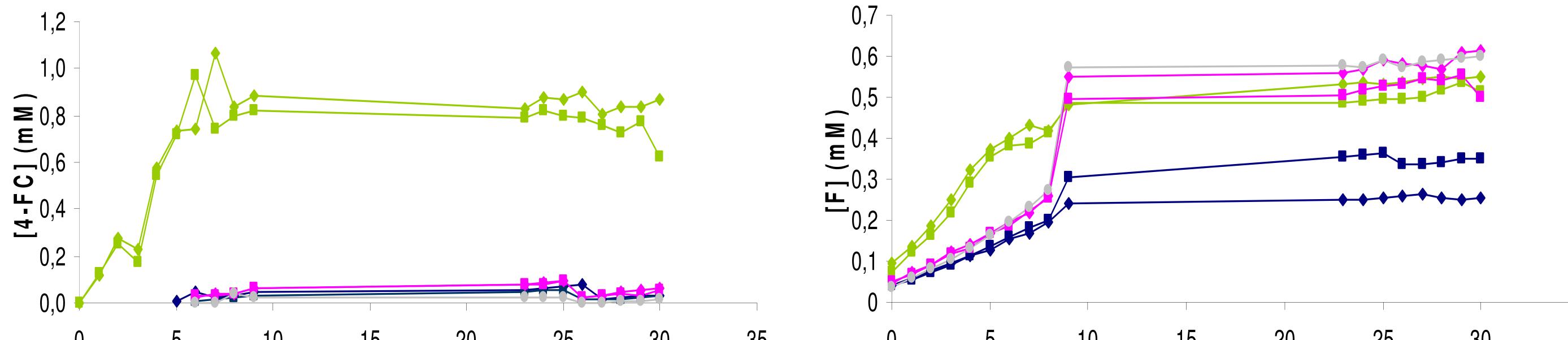
Production of 4-fluorocatechol from fluorobenzene by the wild strain *Labrys portucalensis*

I. S. Moreira¹, M. F. Carvalho¹, C. L. Amorim¹, C. M. M. Afonso², D. B. Janssen³, P. M. L. Castro¹


¹Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal; ² Faculdade de Farmácia, Universidade do Porto, Porto, Portugal, ³ Groningen Biomolecular Sciences and Botechnology Institute, University of Groningen, Groningen, The Netherlands

Introduction

Microbial production of catechols has been subject of investigation because of the advantages it may pose in comparison with organic synthesis. 4-Fluorocatechol (4-FC) is formed as an intermediate during fluorobenzene (FB) degradation by cell suspensions of *Labrys portucalensis* strain F11. The metabolism of this intermediate proceeds through *ortho* cleavage by a (fluoro)catechol 1,2-dioxygenase [1]. A strategy to possibly accumulate 4-FC by cells of strain F11 consist in the inhibition of catechol 1,2-dioxygenase by the addition of chemical inhibitors.


The aim of this work was to evaluate the effect of the addition of three different inhibitors on FB degradation and on 4-FC accumulation.

Methods

Results

- LC-MS analysis showed higher accumulation of 4-FC, by cells induced with FB, when incubated in the presence of FB and CuSO₄ (Fig. 1).
- The level of 4-FC accumulation was lower when AgNO₃ was present (Fig. 1), and Ag⁺ showed a stronger inhibiting effect on FB degradation (Fig. 2).
- FeSO₄ had no effect on either FB degradation or on 4-FC accumulation (Figs. 1 and 2).
- Induced cells of strain F11, in which ring-cleavage dioxygenase is inhibited, may be used for catechol accumulation, and further optimisation may require cloning and recombinant overexpression of the dioxygenase gene, a work which is ongoing.

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 Time (hours) Time (hours)

Figure 1. 4-FC accumulation during FB degradation by *Labrys portucalensis* strain F11 resting cells suspended in KH2PO4-Na2HPO4 buffer with 1 mM ascorbic acid, 2.5 mM FB and: 1 mM AgNO3 (\rightarrow), 0.5 mM AgNO3 (\rightarrow), 1mM CuSO4 (\rightarrow), 0.5 mM CuSO4 (\rightarrow), 1 mM FeSO4 (\rightarrow), 0.5 mM FeSO4 (\rightarrow) and control without inhibitor (\rightarrow).

Acknowledgements

Figure 2. Fluoride release during FB degradation by *Labrys portucalensis* strain F11 resting cells suspended in KH2PO4-Na2HPO4 buffer with 1 mM ascorbic acid, 2.5 mM FB and: 1 mM AgNO3 (--), 0.5 mM AgNO3 (--),1mM CuSO4 (--), 0.5 mM CuSO4 (--), 1 mM FeSO4 (--), 0.5 mM FeSO4 (--) and control without inhibitor (--).

I.S. Moreira and M.F. Carvalho wish to acknowledge a research grant from Fundação para a Ciência e Tecnologia (FCT), Portugal (Ref. SFRH/BD/28744/2006 and SFRH/BPD/14281/2003, respectively) and Fundo Social Europeu (III Quadro Comunitário de Apoio). This work was supported by the FCT Project - PTDC/BIO/67306/2006.

References

[1] M. F. Carvalho, M. I. M. Ferreira, I. S. Moreira, P. M. L. Castro, D. B. Janssen, Appl. Environ. Microbiol., 2006, 72, 7413.

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR