173 research outputs found

    Jahn-Teller Distortions and the Supershell Effect in Metal Nanowires

    Full text link
    A stability analysis of metal nanowires shows that a Jahn-Teller deformation breaking cylindrical symmetry can be energetically favorable, leading to stable nanowires with elliptic cross sections. The sequence of stable cylindrical and elliptical nanowires allows for a consistent interpretation of experimental conductance histograms for alkali metals, including both the shell and supershell structures. It is predicted that for gold, elliptical nanowires are even more likely to form since their eccentricity is smaller than for alkali metals. The existence of certain metastable ``superdeformed'' nanowires is also predicted

    Electronic and atomic shell structure in aluminum nanowires

    Get PDF
    We report experiments on aluminum nanowires in ultra-high vacuum at room temperature that reveal a periodic spectrum of exceptionally stable structures. Two "magic" series of stable structures are observed: At low conductance, the formation of stable nanowires is governed by electronic shell effects whereas for larger contacts atomic packing dominates. The crossover between the two regimes is found to be smooth. A detailed comparison of the experimental results to a theoretical stability analysis indicates that while the main features of the observed electron-shell structure are similar to those of alkali and noble metals, a sequence of extremely stable wires plays a unique role in Aluminum. This series appears isolated in conductance histograms and can be attributed to "superdeformed" non-axisymmetric nanowires.Comment: 15 pages, 9 figure

    On the Stability and Structural Dynamics of Metal Nanowires

    Full text link
    This article presents a brief review of the nanoscale free-electron model, which provides a continuum description of metal nanostructures. It is argued that surface and quantum-size effects are the two dominant factors in the energetics of metal nanowires, and that much of the phenomenology of nanowire stability and structural dynamics can be understood based on the interplay of these two competing factors. A linear stability analysis reveals that metal nanocylinders with certain magic conductance values G=1, 3, 6, 12, 17, 23, 34, 42, 51, 67, 78, 96, ... times the conductance quantum are exceptionally stable. A nonlinear dynamical simulation of nanowire structural evolution reveals a universal equilibrium shape consisting of a magic cylinder suspended between unduloidal contacts. The lifetimes of these metastable structures are also computed.Comment: 8 pages, 6 figure

    When words collide: Bayesian meta-analyses of distractor and target properties in the picture-word interference paradigm

    Full text link
    In the picture-word interference paradigm, participants name pictures while ignoring a written or spoken distractor word. Naming times to the pictures are slowed down by the presence of the distractor word. Various properties of the distractor modulate this slow down, for example naming times are shorter with frequent vs. infrequent distractors. Building on this line of research, the present study investigates in more detail the impact of distractor and target word properties on picture naming times. We report the results of several Bayesian meta-analyses, based on 35 datasets. The aim of the first analysis was to obtain an estimation of the size of the distractor frequency effect, and of its precision, in typical picture-word interference experiments where this variable is not manipulated. The analysis shows that a one-unit increase in log frequency results in response times to the pictures decreasing by about 4ms (95% Credible Interval: [-6, -2]). With the second and third analyses, we show that after accounting for the effect of frequency, two variables known to influence processing times in visual word processing tasks also influence picture naming times: distractor length and orthographic neighborhood. Finally, we found that distractor word frequency and target word frequency interact; the effect of distractor frequency decreases as the frequency of the target word increases. We discuss the theoretical and methodological implications of these findings, as well as the importance of obtaining high-precision estimates of experimental effects

    Stability and Symmetry Breaking in Metal Nanowires

    Full text link
    A general linear stability analysis of simple metal nanowires is presented using a continuum approach which correctly accounts for material-specific surface properties and electronic quantum-size effects. The competition between surface tension and electron-shell effects leads to a complex landscape of stable structures as a function of diameter, cross section, and temperature. By considering arbitrary symmetry-breaking deformations, it is shown that the cylinder is the only generically stable structure. Nevertheless, a plethora of structures with broken axial symmetry is found at low conductance values, including wires with quadrupolar, hexapolar and octupolar cross sections. These non-integrable shapes are compared to previous results on elliptical cross sections, and their material-dependent relative stability is discussed.Comment: 12 pages, 4 figure

    Universality in metallic nanocohesion: a quantum chaos approach

    Full text link
    Convergent semiclassical trace formulae for the density of states and cohesive force of a narrow constriction in an electron gas, whose classical motion is either chaotic or integrable, are derived. It is shown that mode quantization in a metallic point contact or nanowire leads to universal oscillations in its cohesive force: the amplitude of the oscillations depends only on a dimensionless quantum parameter describing the crossover from chaotic to integrable motion, and is of order 1 nano-Newton, in agreement with recent experiments. Interestingly, quantum tunneling is shown to be described quantitatively in terms of the instability of the classical periodic orbits.Comment: corrects spelling of one author name on abstract page (paper is unchanged

    The Escape Problem in a Classical Field Theory With Two Coupled Fields

    Full text link
    We introduce and analyze a system of two coupled partial differential equations with external noise. The equations are constructed to model transitions of monovalent metallic nanowires with non-axisymmetric intermediate or end states, but also have more general applicability. They provide a rare example of a system for which an exact solution of nonuniform stationary states can be found. We find a transition in activation behavior as the interval length on which the fields are defined is varied. We discuss several applications to physical problems.Comment: 24 page
    • …
    corecore