430 research outputs found

    Rigidity percolation on aperiodic lattices

    Full text link
    We studied the rigidity percolation (RP) model for aperiodic (quasi-crystal) lattices. The RP thresholds (for bond dilution) were obtained for several aperiodic lattices via computer simulation using the "pebble game" algorithm. It was found that the (two rhombi) Penrose lattice is always floppy in view of the RP model. The same was found for the Ammann's octagonal tiling and the Socolar's dodecagonal tiling. In order to impose the percolation transition we used so c. "ferro" modification of these aperiodic tilings. We studied as well the "pinwheel" tiling which has "infinitely-fold" orientational symmetry. The obtained estimates for the modified Penrose, Ammann and Socolar lattices are respectively: pcP=0.836±0.002p_{cP} =0.836\pm 0.002, pcA=0.769±0.002p_{cA} = 0.769\pm0.002, pcS=0.938±0.001p_{cS} = 0.938\pm0.001. The bond RP threshold of the pinwheel tiling was estimated to pc=0.69±0.01p_c = 0.69\pm0.01. It was found that these results are very close to the Maxwell (the mean-field like) approximation for them.Comment: 9 LaTeX pages, 3 PostScript figures included via epsf.st

    The separation of economic versus EA parameters in EA-learning.

    Get PDF
    Agent-based computational economics (ACE) combines elements from economics and computer science. In this paper, we focus on the relation between the evolutionary technique that is used and the economic problem that is modeled. Current economic simulations often derive parameter settings for the genetic algorithm directly from the values of the economic model parameters. In this paper we show that this practice may hinder the performance of the GA and thereby hinder agent learning. More specifically, we show that economic model parameters and evolutionary algorithm parameters should be treated separately by comparing two widely used approaches to population learning with respect to their convergence properties and robustnes

    Theoretical analysis of quantum dynamics in 1D lattices: Wannier-Stark description

    Get PDF
    This papers presents a formalism describing the dynamics of a quantum particle in a one-dimensional tilted time-dependent lattice. The description uses the Wannier-Stark states, which are localized in each site of the lattice and provides a simple framework leading to fully-analytical developments. Particular attention is devoted to the case of a time-dependent potential, which results in a rich variety of quantum coherent dynamics is found.Comment: 8 pages, 6 figures, submitted to PR

    Non Equilibrium Electronic Distribution in Single Electron Devices

    Full text link
    The electronic distribution in devices with sufficiently small diemnsions may not be in thermal equilibrium with their surroundings. Systems where the occupancies of electronic states are solely determined by tunneling processes are analyzed. It is shown that the effective temperature of the device may be higher, or lower, than that of its environment, depending on the applied voltage and the energy dependence of the tunneling rates. The I-V characteristics become asymmetric. Comparison with recent experiments is made

    Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda Districts, Uganda, 2007

    Get PDF
    Marburg hemorrhagic fever was detected among 4 miners in Ibanda District, Uganda, from June through September, 2007. Infection was likely acquired through exposure to bats or bat secretions in a mine in Kamwenge District, Uganda, and possibly human-to-human transmission between some patients. We describe the epidemiologic investigation and the health education response

    Charge Solitons in 1-D Arrays of Serially Coupled Josephson Junctions

    Full text link
    We study a 1-D array of Josephson coupled superconducting grains with kinetic inductance which dominates over the Josephson inductance. In this limit the dynamics of excess Cooper pairs in the array is described in terms of charge solitons, created by polarization of the grains. We analyze the dynamics of these topological excitations, which are dual to the fluxons in a long Josephson junction, using the continuum sine-Gordon model. We find that their classical relativistic motion leads to saturation branches in the I-V characteristic of the array. We then discuss the semi-classical quantization of the charge soliton, and show that it is consistent with the large kinetic inductance of the array. We study the dynamics of a quantum charge soliton in a ring-shaped array biased by an external flux through its center. If the dephasing length of the quantum charge soliton is larger than the circumference of the array, quantum phenomena like persistent current and coherent current oscillations are expected. As the characteristic width of the charge soliton is of the order of 100 microns, it is a macroscopic quantum object. We discuss the dephasing mechanisms which can suppress the quantum behaviour of the charge soliton.Comment: 26 pages, LaTex, 7 Postscript figure

    Tick-, mosquito-, and rodent-borne parasite sampling designs for the National Ecological Observatory Network

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways

    Fluctuation theorem for currents and Schnakenberg network theory

    Full text link
    A fluctuation theorem is proved for the macroscopic currents of a system in a nonequilibrium steady state, by using Schnakenberg network theory. The theorem can be applied, in particular, in reaction systems where the affinities or thermodynamic forces are defined globally in terms of the cycles of the graph associated with the stochastic process describing the time evolution.Comment: new version : 16 pages, 1 figure, to be published in Journal of Statistical Physic

    How Do Humans Control Physiological Strain during Strenuous Endurance Exercise?

    Get PDF
    Background: Methodology/principal Findings: Conclusions/significance: Distance running performance is a viable model of human locomotion.To evaluate the physiologic strain during competitions ranging from 5-100 km, we evaluated heart rate (HR) records of competitive runners (n = 211). We found evidence that: 1) physiologic strain (% of maximum HR (%HRmax)) increased in proportional manner relative to distance completed, and was regulated by variations in running pace; 2) the %HRmax achieved decreased with relative distance; 3) slower runners had similar %HRmax response within a racing distance compared to faster runners, and despite differences in pace, the profile of %HRmax during a race was very similar in runners of differing ability; and 4) in cases where there was a discontinuity in the running performance, there was evidence that physiologic effort was maintained for some time even after the pace had decreased.The overall results suggest that athletes are actively regulating their relative physiologic strain during competition, although there is evidence of poor regulation in the case of competitive failures.2.308 SJR (2008) Q1, 60/1774 Medicine (miscellaneous), 19/144 Biochemistry, genetics and molecular biology (miscellaneous), 15/175 Agricultural and biological sciences (miscellaneous)UE
    • …
    corecore