93,088 research outputs found
A Frictionless Marketplace Operating in a World of Extremes
Industrial Organization, Marketing,
Silicon sheet with molecular beam epitaxy for high efficiency solar cells
The capabilities of the new technique of Molecular Beam Epitaxy (MBE) are applied to the growth of high efficiency silicon solar cells. Because MBE can provide well controlled doping profiles of any desired arbitrary design, including doping profiles of such complexity as built-in surface fields or tandem junction cells, it would appear to be the ideal method for development of high efficiency solar cells. It was proposed that UCLA grow and characterize silicon films and p-n junctions of MBE to determine whether the high crystal quality needed for solar cells could be achieved
The introduction of space technology power systems into developing countries
Between 1978 and 1984, NASA-Lewis was responsible for the design, fabrication, installation and operational support of 57 photovoltaic power systems in 27 countries. These systems were installed in locations not served by a central power system and ranged in size from 40 W for powering street lights to 29 kW for providing power to a complete village. Several of the system projects had socio/economic studies components that provided for an assessment of how the introduction of both electricity and a novel high technology power system affected the users and their society
Professor McGrath Offers a Scholarly Take \u3cem\u3eOn Religion and Doctor Who\u3c/em\u3e
Take TV viewers on trips through time and space for 50 years and you’re going to pick up some admirers—including some scholarly ones. That’s what’s happened with Doctor Who, the British series that is celebrating 50 years this month.Two of the show’s fans—Butler University Professor of Religion James McGrath and Andrew Crome, a lecturer in the history of modern Christianity at the University of Manchester (England)—have compiled a new book, Time and Relative Dimensions in Faith: Religion and Doctor Who, in which 19 scholars who also are Doctor Who fans weigh in on how the longest-running science fiction series in television history deals with religious topics
Mechanisms of sensorineural cell damage, death and survival in the cochlea.
The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss (ARHL). Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed
Non-equilibrium dynamics of an active colloidal "chucker"
We report Monte Carlo simulations of the dynamics of a "chucker": a colloidal
particle which emits smaller solute particles from its surface, isotropically
and at a constant rate k_c. We find that the diffusion constant of the chucker
increases for small k_c, as recently predicted theoretically. At large k_c the
chucker diffuses more slowly due to crowding effects. We compare our simulation
results to those of a "point particle" Langevin dynamics scheme in which the
solute concentration field is calculated analytically, and in which
hydrodynamic effects can be included albeit in an approximate way. By
simulating the dragging of a chucker, we obtain an estimate of its apparent
mobility coefficient which violates the fluctuation-dissipation theorem. We
also characterise the probability density profile for a chucker which sediments
onto a surface which either repels or absorbs the solute particles, and find
that the steady state distributions are very different in the two cases. Our
simulations are inspired by the biological example of
exopolysaccharide-producing bacteria, as well as by recent experimental,
simulation and theoretical work on phoretic colloidal "swimmers".Comment: re-submission after referee's comment
Absolute FKBP binding affinities obtained via non-equilibrium unbinding simulations
We compute absolute binding affinities for two ligands bound to the FKBP
protein using non-equilibrium unbinding simulations. The methodology is
straight-forward, requiring little or no modification to many modern molecular
simulation packages. The approach makes use of a physical pathway, eliminating
the need for complicated alchemical decoupling schemes. Results of this study
are promising. For the ligands studied here the binding affinities are
typically estimated within less than 4.0 kJ/mol of the target values; and the
target values are within less than 1.0 kJ/mol of experiment. These results
suggest that non-equilibrium simulation could provide a simple and robust means
to estimate protein-ligand binding affinities.Comment: 9 pages, 3 figures (no necessary color). Changes made to methodology
and results between revision
Multiplication Operators on Weighted Banach Spaces of a Tree
We study multiplication operators on the weighted Banach spaces of an
infinite tree. We characterize the bounded and the compact operators, as well
as determine the operator norm. In addition, we determine the spectrum of the
bounded multiplication operators and characterize the isometries. Finally, we
study the multiplication operators between the weighted Banach spaces and the
Lipschitz space by characterizing the bounded and the compact operators,
determine estimates on the operator norm, and show there are no isometries
Notes on the Biology of \u3ci\u3eSaperda Imitans\u3c/i\u3e Infesting Wind-Damaged Black Cherry in Allegheny Hardwood Stands
This paper reports observations made on the life history and biology of Saperda imitans Felt & Joutel in black cherry, Prunus serotina Ehrh. S. imitans was the principle longhorned beetle (Coleoptera: Cerambycidae) reared from bolts collected from 68 wind-thrown black cherry at the Kane Experimental Forest in northwestern Pennsylvania. It was also the only species that overwintered in the sapwood/outer heartwood, and thus impacted the commercial value of these trees. Gaurotes cyanipennis (Say) was the only other cerambycid reared from caged bolts taken from wind-thrown black cherry. The cerambycids Stenocorus vittiger (Randall), Arthophylax attenuatus (Haldman), G. cyanipennis, Neoclytus acuminatus acuminatus (F.), Clytus ruricola (Olivier), Cyrtophorus verrucosus (Olivier), and Astylopsis macula (Say) were captured in ethanol-baited Lindgren® funnel traps placed in wind-thrown stands, but were not reared from cherry logs. S. imitans was not caught in these traps and apparently it is not attracted to ethanol baits. Neither S. imitans nor G. cyanipennis were reared from completely uprooted trees (dead) or trees with a major portion of the root system still embedded in soil (live). Preferred hosts were black cherry with moist phloem and epicormic branches with \u3c25% live foliage (dying). The density of S. imitans galleries was similar for dying trees in each of three diameter classes; 20-30 cm, \u3e30-40 cm, \u3e40cm. Samples taken from the upper half of the first 5 m of black cherry boles had a higher density of galleries than did those from the lower half. The beetle was recovered in low numbers from branches \u3c10 cm in basal diameter. S. imitans is univoltine and in 2007 peak emergence of adults occurred from late May to early June. Results identified the condition of wind-damaged black cherry most susceptible to an infestation of S. imitans. This information can be used to establish salvage priorities following a weather event such as this
- …
