261 research outputs found

    Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction

    Get PDF
    The effect of external forcings on atmospheric circulation is debated. Due to the short observational period, the analysis of the role of external forcings is hampered, making it difficult to assess the sensitivity of atmospheric circulation to external forcings, as well as persistence of the effects. In observations, the average response to tropical volcanic eruptions is a positive North Atlantic Oscillation (NAO) during the following winter. However, past major tropical eruptions exceeding the magnitude of eruptions during the instrumental era could have had more lasting effects. Decadal NAO variability has been suggested to follow the 11-year solar cycle, and linkages have been made between grand solar minima and negative NAO. However, the solar link to NAO found by modeling studies is not unequivocally supported by reconstructions, and is not consistently present in observations for the 20th century. Here we present a reconstruction of atmospheric winter circulation for the North Atlantic region covering the period 1241–1970 CE. Based on seasonally resolved Greenland ice core records and a 1200-year-long simulation with an isotope-enabled climate model, we reconstruct sea level pressure and temperature by matching the spatiotemporal variability in the modeled isotopic composition to that of the ice cores. This method allows us to capture the primary (NAO) and secondary mode (Eastern Atlantic Pattern) of atmospheric circulation in the North Atlantic region, while, contrary to previous reconstructions, preserving the amplitude of observed year-to-year atmospheric variability. Our results show five winters of positive NAO on average following major tropical volcanic eruptions, which is more persistent than previously suggested. In response to decadal minima of solar activity we find a high-pressure anomaly over northern Europe, while a reinforced opposite response in pressure emerges with a 5-year time lag. On centennial timescales we observe a similar response of circulation as for the 5-year time-lagged response, with a high-pressure anomaly across North America and south of Greenland. This response to solar forcing is correlated to the second mode of atmospheric circulation, the Eastern Atlantic Pattern. The response could be due to an increase in blocking frequency, possibly linked to a weakening of the subpolar gyre. The long-term anomalies of temperature during solar minima shows cooling across Greenland, Iceland and western Europe, resembling the cooling pattern during the Little Ice Age (1450–1850 CE). While our results show significant correlation between solar forcing and the secondary circulation pattern on decadal (r = 0.29, p < 0.01) and centennial timescales (r = 0.6, p < 0.01), we find no consistent relationship between solar forcing and NAO. We conclude that solar and volcanic forcing impacts different modes of our reconstructed atmospheric circulation, which can aid in separating the regional effects of forcings and understanding the underlying mechanisms

    Decadal-scale progression of the onset of Dansgaard–Oeschger warming events

    Get PDF
    During the last glacial period, proxy records throughout the Northern Hemisphere document a succession of rapid millennial-scale warming events, called Dansgaard–Oeschger (DO) events. A range of different mechanisms has been proposed that can produce similar warming in model experiments; however, the progression and ultimate trigger of the events are still unknown. Because of their fast nature, the progression is challenging to reconstruct from paleoclimate data due to the limited temporal resolution achievable in many archives and cross-dating uncertainties between records. Here, we use new high-resolution multi-proxy records of sea-salt (derived from sea spray and sea ice over the North Atlantic) and terrestrial (derived from the central Asian deserts) aerosol concentrations over the period 10–60&thinsp;ka from the North Greenland Ice Core Project (NGRIP) and North Greenland Eemian Ice Drilling (NEEM) ice cores in conjunction with local precipitation and temperature proxies from the NGRIP ice core to investigate the progression of environmental changes at the onset of the warming events at annual to multi-annual resolution. Our results show on average a small lead of the changes in both local precipitation and terrestrial dust aerosol concentrations over the change in sea-salt aerosol concentrations and local temperature of approximately one decade. This suggests that, connected to the reinvigoration of the Atlantic meridional overturning circulation and the warming in the North Atlantic, both synoptic and hemispheric atmospheric circulation changes at the onset of the DO warming, affecting both the moisture transport to Greenland and the Asian monsoon systems. Taken at face value, this suggests that a collapse of the sea-ice cover may not have been the initial trigger for the DO warming.</p

    Radiative Neutralino Decay in Split Supersymmetry

    Full text link
    Radiative neutralino decay χ20−>χ10Îł\chi^0_2 -> \chi^0_1\gamma is studied in a Split Supersymmetric scenario, and compared with mSUGRA and MSSM. This 1-loop process has a transition amplitude which is often quite small, but has the advantage of providing a very clear and distinct signature: electromagnetic radiation plus missing energy. In Split Supersymmetry this radiative decay is in direct competition with the tree-level three-body decay χ20−>χ10ff‟\chi^0_2 -> \chi^0_1 f\overline f, and we obtain large values for the branching ratio B(χ20−>χ10Îł)B(\chi^0_2 -> \chi^0_1\gamma) which can be close to unity in the region M2∌M1M_2 \sim M_1. Furthermore, the value for the radiative neutralino decay branching ratio has a strong dependence on the split supersymmetric scale m~\widetilde{m}, which is otherwise very difficult to infer from experimental observables.Comment: 15 pages and 10 figure

    Testing and improving the IntCal20 calibration curve with independent records

    Get PDF
    Connecting calendar ages to radiocarbon (14C) ages, i.e. constructing a calibration curve, requires 14C samples that represent, or are closely connected to, atmospheric 14C values and that can also be independently dated. In addition to these data, there is information that can serve as independent tests of the calibration curve. For example, information from ice core radionuclide data cannot be directly incorporated into the calibration curve construction as it delivers less direct information on the 14C age–calendar age relationship but it can provide tests of the quality of the calibration curve. Furthermore, ice core ages on 14C-dated volcanic eruptions provide key information on the agreement of ice core and radiocarbon time scales. Due to their scarcity such data would have little impact if directly incorporated into the calibration curve. However, these serve as important “anchor points” in time for independently testing the calibration curve and/or ice-core time scales. Here we will show that such information largely supports the new IntCal20 calibration record. Furthermore, we discuss how floating tree-ring sequences on ice-core time scales agree with the new calibration curve. For the period around 40,000 years ago we discuss unresolved differences between ice core 10Be and 14C records that are possibly related to our limited understanding of carbon cycle influences on the atmospheric 14C concentration during the last glacial period. Finally, we review the results on the time scale comparison between the Greenland ice-core time scale (GICC05) and IntCal20 that effectively allow a direct comparison of 14C-dated records with the Greenland ice core data

    Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard-Oeschger events

    Get PDF
    During the last glacial period Northern Hemisphere climate was characterized by extreme and abrupt climate changes, so-called Dansgaard-Oeschger (DO) events. Most clearly observed as temperature changes in Greenland ice-core records, their climatic imprint was geographically widespread. However, the temporal relation between DO events in Greenland and other regions is uncertain due to the chronological uncertainties of each archive, limiting our ability to test hypotheses of synchronous change. In contrast, the assumption of direct synchrony of climate changes forms the basis of many timescales. Here, we use cosmogenic radionuclides (10Be, 36Cl, 14C) to link Greenland ice-core records to U∕Th-dated speleothems, quantify offsets between the two timescales, and improve their absolute dating back to 45 000 years ago. This approach allows us to test the assumption that DO events occurred synchronously between Greenland ice-core and tropical speleothem records with unprecedented precision. We find that the onset of DO events occurs within synchronization uncertainties in all investigated records. Importantly, we demonstrate that local discrepancies remain in the temporal development of rapid climate change for specific events and speleothems. These may either be related to the location of proxy records relative to the shifting atmospheric fronts or to underestimated U∕Th dating uncertainties. Our study thus highlights the potential for misleading interpretations of the Earth system when applying the common practice of climate wiggle matching.Florian Adolphi, Christopher Bronk Ramsey, Tobias Erhardt, R. Lawrence Edwards, Hai Cheng, Chris S.M. Turney, Alan Cooper, Anders Svensson, Sune O. Rasmussen, Hubertus Fischer and Raimund Muschele

    A Single-Year Cosmic Ray Event at 5410 BCE Registered in C-14 of Tree Rings

    Get PDF
    The annual C-14 data in tree rings is an outstanding proxy for uncovering extreme solar energetic particle (SEP) events in the past. Signatures of extreme SEP events have been reported in 774/775 CE, 992/993 CE, and similar to 660 BCE. Here, we report another rapid increase of C-14 concentration in tree rings from California, Switzerland, and Finland around 5410 BCE. These C-14 data series show a significant increase of similar to 6 parts per thousand in 5411-5410 BCE. The signature of C-14 variation is very similar to the confirmed three SEP events and points to an extreme short-term flux of cosmic ray radiation into the atmosphere. The rapid C-14 increase in 5411/5410 BCE rings occurred during a period of high solar activity and 60 years after a grand C-14 excursion during 5481-5471 BCE. The similarity of our C-14 data to previous events suggests that the origin of the 5410 BCE event is an extreme SEP event.Peer reviewe

    Jet Dipolarity: Top Tagging with Color Flow

    Get PDF
    A new jet observable, dipolarity, is introduced that can distinguish whether a pair of subjets arises from a color singlet source. This observable is incorporated into the HEPTopTagger and is shown to improve discrimination between top jets and QCD jets for moderate to high pT.Comment: 8 pages, 6 figures (updated to JHEP version

    Bulk matter physics and its future at the Large Hadron Collider

    Get PDF
    Measurements at low transverse momentum will be performed at the LHC for studying particle production mechanisms in pppp and heavy-ion collisions. Some of the experimental capabilities for bulk matter physics are presented, focusing on tracking elements and particle identification. In order to anticipate the study of baryon production for both colliding systems at multi-TeV energies, measurements for identified species and recent model extrapolations are discussed. Several mechanisms are expected to compete for hadro-production in the low momentum region. For this reason, experimental observables that could be used for investigating multi-parton interactions and help understanding the "underlying event" content in the first pppp collisions at the LHC are also mentioned.Comment: 6 pages, 7 figures. To appear in the proceedings of Hot Quarks 2008, Estes Park, Colorado, 18-23 August 200
    • 

    corecore