64 research outputs found

    Use of Variable Pressure Suits, Intermittent Recompression and Nitrox Breathing Mixtures during Lunar Extravehicular Activities

    Get PDF
    This slide presentation reviews the use of variable pressure suits, intermittent recompression and Nitrox breathing mixtures to allow for multiple short extravehicular activities (EVAs) at different locations in a day. This new operational concept of multiple short EVAs requires short purge times and shorter prebreathes to assure rapid egress with a minimal loss of the vehicular air. Preliminary analysis has begun to evaluate the potential benefits of the intermittent recompression, and Nitrox breathing mixtures when used with variable pressure suits to enable reduce purges and prebreathe durations

    Evaluation of Dual Pressurized Rover Operations During Simulated Planetary Surface Exploration

    Get PDF
    Introduction: A pair of small pressurized rovers (Space Exploration Vehicles, or SEVs) is at the center of the Global Point-of-Departure architecture for future human planetary exploration. Simultaneous operation of multiple crewed surface assets should maximize productive crew time, minimize overhead, and preserve contingency return paths. Methods: A 14-day mission simulation was conducted in the Arizona desert as part of NASA?s 2010 Desert Research and Technology Studies (DRATS). The simulation involved two SEV concept vehicles performing geological exploration under varied operational modes affecting both the extent to which the SEVs must maintain real-time communications with mission control ("Continuous" vs. "Twice-a-Day") and their proximity to each other ("Lead-and-Follow" vs. "Divide-and-Conquer"). As part of a minimalist lunar architecture, no communications relay satellites were assumed. Two-person crews consisting of an astronaut and a field geologist operated each SEV, day and night, throughout the entire 14-day mission, only leaving via the suit ports to perform simulated extravehicular activities. Standard metrics enabled quantification of the habitability and usability of all aspects of the SEV concept vehicles throughout the mission, as well as comparison of the extent to which the operating modes affected crew productivity and performance. Practically significant differences in the relevant metrics were prospectively defined for the testing of all hypotheses. Results and Discussion: Data showed a significant 14% increase in available science time (AST) during Lead-and-Follow mode compared with Divide-and-Conquer, primarily because of the minimal overhead required to maintain communications during Lead-and-Follow. In Lead-and-Follow mode, there was a non-significant 2% increase in AST during Twice-a-Day vs. Continuous communications. Situational awareness of the other vehicle?s location, activities, and contingency return constraints were enhanced during Lead-and-Follow and Twice-a-Day communications modes due to line-of-sight and direct SEV-to-SEV communication. Preliminary analysis of Scientific Data Quality and Observation Quality metrics showed no significant differences between modes

    Evidence-based Approach to Establish Space Suit Carbon Dioxide Limits

    Get PDF
    A literature survey was conducted to assess if published data (evidence) could help inform a space suit carbon dioxide (CO2) limit. The search identified more than 120 documents about human interaction with elevated CO2. Until now, the guiding philosophy has been to drive space suit CO2 as low as reasonably achievable. NASAs EVA Office requested an evidencebased approach to support a new generation of exploration-class extravehicular activity (EVA) space suits. Specific literature data about CO2 are not available for EVA in microgravity because EVA is an operational activity and not a research platform. However, enough data from groundbased research are available to facilitate a consensus of expert opinion on space suit CO2 limits. The compilation of data in this report can answer many but not all concerns about the consequences of hypercapnic exercise in a space suit. Inspired partial pressure of CO2 (PICO2) and not dry-gas partial pressure of CO2 (PCO2) is the appropriate metric for hypercapnic dose to establish space suit CO2 limits. The reduction of inspired gas partial pressures by saturation of the inspired gases with water vapor at 37C is a significant factor under conditions of hypobaric space suit operation. Otherwise healthy EVA astronauts will exhibit wide variability in responses to acute hypercapnia while at rest and during exercise. What is clear from the literature is the absence of prospective (objective) accept or reject criteria for CO2 exposure in general, and no such criteria exist for operating a space suit. There is no absolute Gold Standard for an acceptable acute hypercapnic limit, just a gradual decrease in performance as CO2 increases. Acceptable CO2 exposure limits are occupation, situation (learned or novel tasks), and personspecific. Investigators who measured hypercapnic physiology rarely correlated those changes to neurocognitive symptoms, and those that measured hypercapnic neurocognition rarely correlated those changes with physiology. Some answers about changes in neurocognition and functional EVA performance during hypercapnic exercise in a space suit await new research

    EVA Health and Human Performance Benchmarking Study

    Get PDF
    Multiple HRP Risks and Gaps require detailed characterization of human health and performance during exploration extravehicular activity (EVA) tasks; however, a rigorous and comprehensive methodology for characterizing and comparing the health and human performance implications of current and future EVA spacesuit designs does not exist. This study will identify and implement functional tasks and metrics, both objective and subjective, that are relevant to health and human performance, such as metabolic expenditure, suit fit, discomfort, suited postural stability, cognitive performance, and potentially biochemical responses for humans working inside different EVA suits doing functional tasks under the appropriate simulated reduced gravity environments. This study will provide health and human performance benchmark data for humans working in current EVA suits (EMU, Mark III, and Z2) as well as shirtsleeves using a standard set of tasks and metrics with quantified reliability. Results and methodologies developed during this test will provide benchmark data against which future EVA suits, and different suit configurations (eg, varied pressure, mass, CG) may be reliably compared in subsequent tests. Results will also inform fitness for duty standards as well as design requirements and operations concepts for future EVA suits and other exploration systems

    Modeling Oxygen Prebreathe Protocols for Exploration Extravehicular Activities Using Variable Pressure Suits

    Get PDF
    Exploration missions are expected to use variable pressure extravehicular activity (EVA) spacesuits as well as a spacecraft "exploration atmosphere" of 56.5 kPa (8.2 psia), 34% O2, both of which provide the possibility of reducing the oxygen prebreathe times necessary to reduce decompression sickness (DCS) risk. Previous modeling work predicted 8.4% DCS risk for an EVA beginning at the exploration atmosphere, followed by 15 minutes of in-suit O2 prebreathe, and 6 hours of EVA at 29.6 kPa (4.3 psia). In this study we model notional prebreathe protocols for a variable pressure suit where the exploration atmosphere is unavailable

    NEEMO 14: Evaluation of Human Performance for Rover, Cargo Lander, Crew Lander, and Exploration Tasks in Simulated Partial Gravity

    Get PDF
    The ultimate success of future human space exploration missions is dependent on the ability to perform extravehicular activity (EVA) tasks effectively, efficiently, and safely, whether those tasks represent a nominal mode of operation or a contingency capability. To optimize EVA systems for the best human performance, it is critical to study the effects of varying key factors such as suit center of gravity (CG), suit mass, and gravity level. During the 2-week NASA Extreme Environment Mission Operations (NEEMO) 14 mission, four crewmembers performed a series of EVA tasks under different simulated EVA suit configurations and used full-scale mockups of a Space Exploration Vehicle (SEV) rover and lander. NEEMO is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Quantitative and qualitative data collected during NEEMO 14, as well as from spacesuit tests in parabolic flight and with overhead suspension, are being used to directly inform ongoing hardware and operations concept development of the SEV, exploration EVA systems, and future EVA suits. OBJECTIVE: To compare human performance across different weight and CG configurations. METHODS: Four subjects were weighed out to simulate reduced gravity and wore either a specially designed rig to allow adjustment of CG or a PLSS mockup. Subjects completed tasks including level ambulation, incline/decline ambulation, standing from the kneeling and prone position, picking up objects, shoveling, ladder climbing, incapacitated crewmember handling, and small and large payload transfer. Subjective compensation, exertion, task acceptability, and duration data as well as photo and video were collected. RESULTS: There appear to be interactions between CG, weight, and task. CGs nearest the subject s natural CG are the most predictable in terms of acceptable performance across tasks. Future research should focus on understanding the interactions between CG, mass, and subject differences

    An Integrated Extravehicular Activity Research Plan

    Get PDF
    Multiple organizations within NASA and outside of NASA fund and participate in research related to extravehicular activity (EVA). In October 2015, representatives of the EVA Office, the Crew and Thermal Systems Division (CTSD), and the Human Research Program (HRP) at NASA Johnson Space Center agreed on a formal framework to improve multi-year coordination and collaboration in EVA research. At the core of the framework is an Integrated EVA Research Plan and a process by which it will be annually reviewed and updated. The over-arching objective of the collaborative framework is to conduct multi-disciplinary cost-effective research that will enable humans to perform EVAs safely, effectively, comfortably, and efficiently, as needed to enable and enhance human space exploration missions. Research activities must be defined, prioritized, planned and executed to comprehensively address the right questions, avoid duplication, leverage other complementary activities where possible, and ultimately provide actionable evidence-based results in time to inform subsequent tests, developments and/or research activities. Representation of all appropriate stakeholders in the definition, prioritization, planning and execution of research activities is essential to accomplishing the over-arching objective. A formal review of the Integrated EVA Research Plan will be conducted annually. External peer review of all HRP EVA research activities including compilation and review of published literature in the EVA Evidence Book is already performed annually. Coordination with stakeholders outside of the EVA Office, CTSD, and HRP is already in effect on a study-by-study basis; closer coordination on multi-year planning with other EVA stakeholders including academia is being actively pursued. Details of the current Integrated EVA Research Plan are presented including description of ongoing and planned research activities in the areas of: Benchmarking; Anthropometry and Suit Fit; Sensors; Human-Suit Modeling; Suit Trauma Monitoring and Countermeasures; EVA Workload and Duration Effects; Decompression Sickness Risk Mitigation; Deconditioned EVA Performance; and Exploration EVA Concept of Operations

    Temporal Changes in Astronauts Muscle and Cardiorespiratory Physiology Pre-, In-, and Post-Spaceflight

    Get PDF
    NASAs vision for future exploration missions depends on the ability to protect astronauts health and safety for performance of Extravehicular Activity (EVA), and to allow astronauts to safely egress from vehicles in a variety of landing scenarios (e.g. water landing upon return to Earth and undefined planetary/lunar landings). Prolonged exposure to spaceflight results in diminished tolerance to prolonged physical activity, decreased cardiac and sensorimotor function, and loss of bone mineral density, muscle mass, and muscle strength. For over 50 years exercise has been the primary countermeasure against these physiologic decrements during spaceflight, and while the resulting protection is adequate for ISS missions (i.e., Soyuz landing, microgravity EVAs), there is little information regarding time-course changes in muscle and aerobic performance. As spaceflight progresses towards longer exploration missions and vehicles with less robust exercise capabilities compared to ISS, countermeasures will need to be combined and optimized to protect crew health and performance across all organ systems over the course of exploration missions up to 3 years in duration. This will require a more detailed understanding of the dynamic effects of spaceflight on human performance. Thus, the focus of this study is quantifying decrements in physical performance over different mission durations, and to provide detailed information on the physiological rational for why and when observed changes in performance occur. The research proposed will temporally profile changes in astronauts cardiorespiratory fitness, muscle mass, strength, and endurance over spaceflight missions of 2 months, 6 months, and up to 1 year in duration. Additionally, an extrapolation model will provide predictions for changes associated with exploration missions 2-3 years in duration. To accomplish these objectives astronauts will be asked to participate in pre, in, post-flight measurement of muscle performance, muscle size, cardiorespiratory fitness and submaximal performance capabilities, as well as non-invasive assessment of cerebral and muscle oxygenation and perfusion (Table 1). Additionally, ambulatory and in-flight exercise, nutrition, and sleep will be monitored using a variety of commercial technologies and in-flight assessment tools. Significance: Our detailed testing protocol will provide valuable information for describing how and when spaceflight-induced muscle and aerobic based adaptations occur over the course of spaceflight missions up to and beyond 1 year. This information will be vital in the assessment as to whether humans can be physically ready for deep space exploration such as Mars missions with current technology, or if additional mitigation strategies are necessary

    Life Sciences Implications of Lunar Surface Operations

    Get PDF
    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program

    Space-to-Ground Interactions While Conducting Scientific Fieldwork Under Mars Mission Constraints

    Get PDF
    The Biologic Analog Science Associated with Lava Terrains (BASALT) project is a 4-year program dedicated to iteratively designing, implementing, and evaluating concepts of operations (ConOps) and supporting capabilities to enable and enhance scientific exploration for future human Mars missions. BASALT incorporates three field deployments during which real (non-simulated) biological and geochemical field science is conducted at two high-fidelity Mars analog locations under simulated Mars mission conditions, including communication de-lays and data transmission limitations. BASALTs primary science objective is to investigate how the redox conditions of altered basaltic environments affect the development of microbial communities in these Mars-relevant settings. Field sites include the active East Rift Zone on the Big Island of Hawaii, reminiscent of early Mars when basaltic volcanism and interaction with water were widespread, and the dormant eastern Snake River Plain in Idaho, similar to present-day Mars where basaltic volcanism is rare and most evidence for volcano-driven hydrothermal activity is relict. BASALTs primary science operations objective is to investigate exploration ConOps and capabilities that facilitate scientific return during human-robotic exploration under Mars mission constraints. Each field deployment consists of ten extravehicular activities (EVAs) on the volcanic flows in which two extravehicular and two intravehicular (IV) crew-members conduct the science while communicating across time delay and under bandwidth constraints with an Earth-based Mission Support Center (MSC) comprised of expert scientists and operators. Communication latencies of 5 and 15-minute one-way light time and low (0.512 Mb/s uplink, 1.54 Mb/s down-link) and high (5.0 Mb/s uplink, 10.0 Mb/s downlink) bandwidth conditions are being evaluated. EVA crewmembers communicate with the MSC via voice and text messaging and provide scientific instrument data, still imagery, video streams, and GPS tracking information. The MSC reviews this data across delay and provides recommendations for presampling and sampling tasks. The scientists used dynamic leaderboards (priority rank-ing lists), to track and rank candidate samples relative to one another and against the science objectives for the current EVA and the overall mission. Updates to the dynamic leaderboards are relayed regularly to the IV crewmembers to provide scientific feedback from Earth and to help minimize crew idle time (time spent waiting for Earth input during which no productive tasks are performed). EVA timelines are strategically designed to enable continuous (delayed) feedback from an Earth-based science team while simultaneously minimizing crew idle time. Such timelines are operationally advantageous, reducing transport costs by eliminating the need for crews to return to the same locations on multiple EVAs while still providing opportunities for recommendations from science experts on Earth, and scientifically advantageous by minimizing the potential for cross-contamination across sites. This paper will highlight the space-to-ground interaction results from the three BASALT field deployments, including planned versus actual EVA time-line data, ground assimilation times (the amount of time available to the MSC to provide input to the crew), and idle time. Furthermore, we describe how these results vary under the different communication latency and bandwidth conditions. Together, these data will provide a basis for guiding and prioritizing capability development for future human exploration missions
    • …
    corecore