research

Temporal Changes in Astronauts Muscle and Cardiorespiratory Physiology Pre-, In-, and Post-Spaceflight

Abstract

NASAs vision for future exploration missions depends on the ability to protect astronauts health and safety for performance of Extravehicular Activity (EVA), and to allow astronauts to safely egress from vehicles in a variety of landing scenarios (e.g. water landing upon return to Earth and undefined planetary/lunar landings). Prolonged exposure to spaceflight results in diminished tolerance to prolonged physical activity, decreased cardiac and sensorimotor function, and loss of bone mineral density, muscle mass, and muscle strength. For over 50 years exercise has been the primary countermeasure against these physiologic decrements during spaceflight, and while the resulting protection is adequate for ISS missions (i.e., Soyuz landing, microgravity EVAs), there is little information regarding time-course changes in muscle and aerobic performance. As spaceflight progresses towards longer exploration missions and vehicles with less robust exercise capabilities compared to ISS, countermeasures will need to be combined and optimized to protect crew health and performance across all organ systems over the course of exploration missions up to 3 years in duration. This will require a more detailed understanding of the dynamic effects of spaceflight on human performance. Thus, the focus of this study is quantifying decrements in physical performance over different mission durations, and to provide detailed information on the physiological rational for why and when observed changes in performance occur. The research proposed will temporally profile changes in astronauts cardiorespiratory fitness, muscle mass, strength, and endurance over spaceflight missions of 2 months, 6 months, and up to 1 year in duration. Additionally, an extrapolation model will provide predictions for changes associated with exploration missions 2-3 years in duration. To accomplish these objectives astronauts will be asked to participate in pre, in, post-flight measurement of muscle performance, muscle size, cardiorespiratory fitness and submaximal performance capabilities, as well as non-invasive assessment of cerebral and muscle oxygenation and perfusion (Table 1). Additionally, ambulatory and in-flight exercise, nutrition, and sleep will be monitored using a variety of commercial technologies and in-flight assessment tools. Significance: Our detailed testing protocol will provide valuable information for describing how and when spaceflight-induced muscle and aerobic based adaptations occur over the course of spaceflight missions up to and beyond 1 year. This information will be vital in the assessment as to whether humans can be physically ready for deep space exploration such as Mars missions with current technology, or if additional mitigation strategies are necessary

    Similar works