69 research outputs found

    Understanding Galaxy Formation and Evolution

    Get PDF
    The old dream of integrating into one the study of micro and macrocosmos is now a reality. Cosmology, astrophysics, and particle physics intersect in a scenario (but still not a theory) of cosmic structure formation and evolution called Lambda Cold Dark Matter (LCDM) model. This scenario emerged mainly to explain the origin of galaxies. In these lecture notes, I first present a review of the main galaxy properties, highlighting the questions that any theory of galaxy formation should explain. Then, the cosmological framework and the main aspects of primordial perturbation generation and evolution are pedagogically detached. Next, I focus on the ``dark side'' of galaxy formation, presenting a review on LCDM halo assembling and properties, and on the main candidates for non-baryonic dark matter. It is shown how the nature of elemental particles can influence on the features of galaxies and their systems. Finally, the complex processes of baryon dissipation inside the non-linearly evolving CDM halos, formation of disks and spheroids, and transformation of gas into stars are briefly described, remarking on the possibility of a few driving factors and parameters able to explain the main body of galaxy properties. A summary and a discussion of some of the issues and open problems of the LCDM paradigm are given in the final part of these notes.Comment: 50 pages, 10 low-resolution figures (for normal-resolution, DOWNLOAD THE PAPER (PDF, 1.9 Mb) FROM http://www.astroscu.unam.mx/~avila/avila.pdf). Lectures given at the IV Mexican School of Astrophysics, July 18-25, 2005 (submitted to the Editors on March 15, 2006

    In the Shadow of Social Stereotypes: Gender diversity on corporate boards, board chair’s gender and strategic change

    Get PDF
    Against the backdrop of spirited public and academic discourse about women’s low visibility in corporate leadership positions, we examine board gender diversity’s influence on strategic change in firms. Viewing gender as an institutionalized system of social beliefs, the article makes two related arguments. First, it contends that because of gender status difference and bias, more gender diversity will result in less strategic change as a board’s decisions begin to follow the stance of a smaller but relatively more influential ‘boy’s club’. Second, it contends that should a board have a female chair as opposed to a male chair, a recession in the shadow of gender stereotypes will reverse board gender diversity’s negative effect on strategic change. Instrumental variables analysis of data from Fortune 500 firms supports the theory. We discuss the study’s contributions and implications

    Domatia reduce larval cannibalism in predatory mites

    Get PDF
    1. Acarodomatia are small structures on the underside of leaves of many plant species, which are mainly inhabited by carnivorous and fungivorous mites. 2. Domatia are thought to protect these mites against adverse environmental conditions and against predation. They are considered as an indirect plant defence; they provide shelter to predators and fungivores and these in turn protect the plants against herbivores and fungi. 3. We studied the possible role of domatia of coffee (Coffea arabica L.) (Rubiaceae) and sweet pepper (Capsicum annum L.) (Solanaceae) in reducing cannibalism in the mites inhabiting the domatia. We measured cannibalism of larvae by adults of the predatory mites Iphiseiodes zuluagai Denmark & Muma and Amblyseius herbicolus Chant on coffee leaf discs and of the predatory mite Iphiseius degenerans (Berl.) on sweet pepper leaf. Domatia were closed with glue or left open. 4. Cannibalism in all three species increased when domatia were closed. With I. degenerans, moreover, we found that the previous diet of the cannibal attenuated the effect of domatia on cannibalism. 5. We conclude that domatia can protect young predatory mites against cannibalism by adults and that the diet of cannibals affects the rate of cannibalism

    A Delphi Survey Study to Formulate Statements on the Treatability of Inherited Metabolic Disorders to Decide on Eligibility for Newborn Screening

    Get PDF
    The Wilson and Jungner (W&amp;J) and Andermann criteria are meant to help select diseases eligible for population-based screening. With the introduction of next-generation sequencing (NGS) methods for newborn screening (NBS), more inherited metabolic diseases (IMDs) can technically be included, and a revision of the criteria was attempted. This study aimed to formulate statements and investigate whether those statements could elaborate on the criterion of treatability for IMDs to decide on eligibility for NBS. An online Delphi study was started among a panel of Dutch IMD experts (EPs). EPs evaluated, amended, and approved statements on treatability that were subsequently applied to 10 IMDs. After two rounds of Delphi, consensus was reached on 10 statements. Application of these statements selected 5 out of 10 IMDs proposed for this study as eligible for NBS, including 3 IMDs in the current Dutch NBS. The statement: ‘The expected benefit/burden ratio of early treatment is positive and results in a significant health outcome’ contributed most to decision-making. Our Delphi study resulted in 10 statements that can help to decide on eligibility for inclusion in NBS based on treatability, also showing that other criteria could be handled in a comparable way. Validation of the statements is required before these can be applied as guidance to authorities.</p

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    Molecular characterization of MRSA collected during national surveillance between 2008 and 2019 in the Netherlands

    Get PDF
    Background.Although the Netherlands is a country with a low endemic level, methicillin-resistant Staphylococcus aureus (MRSA) poses a significant health care problem. Therefore, high coverage national MRSA surveillance has been in place since 1989. To monitor possible changes in the type-distribution and emergence of resistance and virulence, MRSA isolates are molecularly characterized.Methods.All 43,321 isolates from 36,520 persons, collected 2008-2019, were typed by multiple-locus variable number tandem repeats analysis (MLVA) with simultaneous PCR detection of the mecA, mecC and lukF-PV genes, indicative for PVL. Next-generation sequencing data of 4991 isolates from 4798 persons were used for whole genome multi-locus sequence typing (wgMLST) and identification of resistance and virulence genes.Results.We show temporal change in the molecular characteristics of the MRSA population with the proportion of PVL-positive isolates increasing from 15% in 2008-2010 to 25% in 2017-2019. In livestock-associated MRSA obtained from humans, PVL-positivity increases to 6% in 2017-2019 with isolates predominantly from regions with few pig farms. wgMLST reveals the presence of 35 genogroups with distinct resistance, virulence gene profiles and specimen origin. Typing shows prolonged persistent MRSA carriage with a mean carriage period of 407 days. There is a clear spatial and a weak temporal relationship between isolates that clustered in wgMLST, indicative for regional spread of MRSA strains.Conclusions.Using molecular characterization, this exceptionally large study shows genomic changes in the MRSA population at the national level. It reveals waxing and waning of types and genogroups and an increasing proportion of PVL-positive MRSA.A group of bacteria that cause difficult-to-treat infections in humans is methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to monitor changes in the spread of MRSA, their disease causing potential and resistance to antibiotics used to treat MRSA infections. MRSA from patients and their contacts in the Netherlands were collected over a period of 12 years and characterized. This revealed new types of MRSA emerged and others disappeared. An increasing number of MRSA produces a protein called PVL toxin, enabling MRSA to cause more severe infections. Also, some people appear to carry MRSA without any disease for more than a year. These findings suggest an increasing disease potential of MRSA and possible unnoticed sources of infection. Consequently, it is important to maintain monitoring of these infections to minimize MRSA spread.Schouls et al. characterize 43,321 methicillin-resistant Staphylococcus aureus (MRSA) isolates obtained between 2008 and 2019 in the Netherlands. Genomic changes occur in the MRSA population, with increases in the proportion of PVL-positive MRSA.Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    Quasi-steady state approximation to a fungal growth model

    No full text
    In a previous paper, we proposed a fungal growth model (Lamour et al., 2001 IMA J. Math. Appl. Med. Biol., 17, 329-346), describing the colonization and decomposition of substrate, subsequent uptake of nutrients, and incorporation into fungal biomass, and performed an overall-steady-state analysis. In this paper we assume that where nutrient dynamics are much faster than the dynamics of fungal biomass and substrate, the system will reach a quasi-steady-state relatively quickly. We show how the quasi-steady-state approximation is a simplification of the full fungal growth model. We then derive an explicit fungal invasion criterion, which was not possible for the full model, and characterize parameter domains for invasion and extinction. Importantly, the fungal invasion criterion takes two forms: one for systems where carbon is limiting, another for systems where nitrogen is limiting. We focus attention on what happens in the short term immediately following the introduction of a fungus to a fungal-free system by analysing the stability of the trivial steady state, and then check numerically whether the fungus is able to persist. The derived invasion criterion was found to be valid also for the full model. Knowledge of the factors that determine invasion is essential to an understanding of fungal dynamics. The simplified model allows the invasion criterion to be tested with experimental data

    Modelling the growth of soil-borne fungi in response to carbon and nitrogen

    No full text
    Growth of soil-borne fungi is poorly described and understood, largely because non-destructive observations on hyphae in soil are difficult to make. Mathematical modelling can help in the understanding of fungal growth. Except for a model by Paustian & Schnürer (1987a), fungal growth models do not consider carbon and nitrogen contents of the supplied substrate, although these nutrients have considerable effects on hyphal extension in soil. We introduce a fungal growth model in relation to soil organic matter decomposition dealing with the detailed dynamics of carbon and nitrogen. Substrate with a certain carbon: nitrogen ratio is supplied at a constant rate, broken down and then taken up by fungal mycelium. The nutrients are first stored internally in metabolic pools and then incorporated into structural fungal biomass. Standard mathematical procedures were used to obtain overall-steady states of the variables (implicitly from a cubic equation) and the conditions for existence. Numerical computations for a wide range of parameter combinations show that at most one solution for the steady state is biologically meaningful, specified by the conditions for existence. These conditions specify a constraint, namely that the 'energy` (in terms of carbon) invested in breakdown of substrate should be less than the 'energy` resulting from breakdown of substrate, leading to a positive carbon balance. The biological interpretation of the conditions for existence is that for growth the 'energy` necessary for production of structural fungal biomass and for maintenance should be less than the mentioned positive carbon balance in the situation where all substrate is colonized. In summary, the analysis of this complicated fungal growth model gave results with a clear biological interpretation
    • …
    corecore