11,062 research outputs found

    Teleparallel Spin Connection

    Get PDF
    A new expression for the spin connection of teleparallel gravity is proposed, given by minus the contorsion tensor plus a zero connection. The corresponding minimal coupling is covariant under local Lorentz transformation, and equivalent to the minimal coupling prescription of general relativity. With this coupling prescription, therefore, teleparallel gravity turns out to be fully equivalent to general relativity, even in the presence of spinor fields.Comment: 2 pages, RevTeX, to appear in Phys. Rev D (Brief Report

    Future dynamics in f(R) theories

    Full text link
    The f(R)f(R) gravity theories provide an alternative way to explain the current cosmic acceleration without invoking dark energy matter component. However, the freedom in the choice of the functional forms of f(R)f(R) gives rise to the problem of how to constrain and break the degeneracy among these gravity theories on theoretical and/or observational grounds. In this paper to proceed further with the investigation on the potentialities, difficulties and limitations of f(R)f(R) gravity, we examine the question as to whether the future dynamics can be used to break the degeneracy between f(R)f(R) gravity theories by investigating the future dynamics of spatially homogeneous and isotropic dust flat models in two f(R)f(R) gravity theories, namely the well known f(R)=R+αRnf(R) = R + \alpha R^{n} gravity and another by A. Aviles et al., whose motivation comes from the cosmographic approach to f(R)f(R) gravity. To this end we perform a detailed numerical study of the future dynamic of these flat model in these theories taking into account the recent constraints on the cosmological parameters made by the Planck team. We show that besides being powerful for discriminating between f(R)f(R) gravity theories, the future dynamics technique can also be used to determine the fate of the Universe in the framework of these f(R)f(R) gravity theories. Moreover, there emerges from our numerical analysis that if we do not invoke a dark energy component with equation-of-state parameter ω<1\omega < -1 one still has dust flat FLRW solution with a big rip, if gravity deviates from general relativity via f(R)=R+αRnf(R) = R + \alpha R^n . We also show that FLRW dust solutions with f<0f''<0 do not necessarily lead to singularity.Comment: 12 pages, 8 figures. V2: Generality and implications of the results are emphasized, connection with the recent literature improved, typos corrected, references adde

    Tunable asymmetric magnetoimpedance effect in ferromagnetic NiFe/Cu/Co films

    Full text link
    We investigate the magnetization dynamics through the magnetoimpedance effect in ferromagnetic NiFe/Cu/Co films. We observe that the magnetoimpedance response is dependent on the thickness of the non-magnetic Cu spacer material, a fact associated to the kind of the magnetic interaction between the ferromagnetic layers. Thus, we present an experimental study on asymmetric magnetoimpedance in ferromagnetic films with biphase magnetic behavior and explore the possibility of tuning the linear region of the magnetoimpedance curves around zero magnetic field by varying the thickness of the non-magnetic spacer material, and probe current frequency. We discuss the experimental magnetoimpedance results in terms of the different mechanisms governing the magnetization dynamics at distinct frequency ranges, quasi-static magnetic properties, thickness of the non-magnetic spacer material, and the kind of the magnetic interaction between the ferromagnetic layers. The results place ferromagnetic films with biphase magnetic behavior exhibiting asymmetric magnetoimpedance effect as a very attractive candidate for application as probe element in the development of auto-biased linear magnetic field sensors.Comment: 5 figure

    Ideias sobre evolução de professores de biologia em formação inicial

    Get PDF
    O conceito de evolução biológica é considerado um elemento integrador tanto nas pesquisas biológicas como no ensino de biologia. Entretanto, as pesquisas na área de Ensino de Biologia evidenciam as dificuldades em ensinar e apreender esse conceito e na utilização do mesmo como elemento integrador na aprendizagem de conceitos biológicos. Desse modo, este trabalho objetiva investigar a concepção de evolução biológica de alunos ao longo de um curso de Ciências Biológicas em uma Universidade do Estado do Paraná – Brasil. Os dados indicaram o aumento do grau de complexidade das respostas no processo de formação do curso de ciências biológicas analisado, mas também a persistência de respostas finalistas e superficiais ao longo de todos os anos do curso
    corecore