451 research outputs found

    WS3.2 Who is reported in the Belgian, Dutch and French CF registries?

    Get PDF

    Building block libraries and structural considerations in the self-assembly of polyoxometalate and polyoxothiometalate systems

    Get PDF
    Inorganic metal-oxide clusters form a class of compounds that are unique in their topological and electronic versatility and are becoming increasingly more important in a variety of applications. Namely, Polyoxometalates (POMs) have shown an unmatched range of physical properties and the ability to form structures that can bridge several length scales. The formation of these molecular clusters is often ambiguous and is governed by self-assembly processes that limit our ability to rationally design such molecules. However, recent years have shown that by considering new building block principles the design and discovery of novel complex clusters is aiding our understanding of this process. Now with current progress in thiometalate chemistry, specifically polyoxothiometalates (POTM), the field of inorganic molecular clusters has further diversified allowing for the targeted development of molecules with specific functionality. This chapter discusses the main differences between POM and POTM systems and how this affects synthetic methodologies and reactivities. We will illustrate how careful structural considerations can lead to the generation of novel building blocks and further deepen our understanding of complex systems

    In vivo study of the GC90/IRIV vaccine for immune response and autoimmunity into a novel humanised transgenic mouse

    Get PDF
    Parathyroid hormone-related protein (PTH-rP), a secreted protein produced by prostate carcinoma and other epithelial cancers, is considered a key agent for the development of bone metastases. We investigated the construct GC90/IRIV, composed of immunopotentiating reconstituted influenza virosomes (IRIV) containing PTH-rP gene plasmids (GC90), as a potential tool for human anticancer immunotherapy into humanised mice transgenic for HLA-A(*)02.01, the human-β2 microglobulin, and the human CD8α molecule. Intranasal administration of GC90/IRIV resulted in the induction of a PTH-rP-specific multiepitope cytotoxic T-cell (CTL) response. Cytotoxic T cells derived from vaccinated mice were capable of lysing in vitro syngenic murine PTH-rP transfectants and human HLA-A(*)02.01+/PTH-rP+ prostate carcinoma LNCaP cells as well. The immune response capacity and the absence of any sign of toxicity and/or autoimmunity in vivo suggest the GC90/IRIV vaccine as a valid tool for active specific immunotherapy of human cancers and metastases overexpressing PTH-rP

    Оценка осадков в прибрежных районах Антарктики в глобальной модели атмосферы LMDZ6 с использованием наземных радиолокационных наблюдений

    Get PDF
    In the current context of climate change in the poles, one of the objectives of the APRES3 (Antarctic Precipitation Remote Sensing from Surface and Space) project was to characterize the vertical structure of precipitation in order to better simulate it. Precipitation simulated by models in Antarctica is currently very widespread and it overestimates the data. Sensitivity studies have been conducted using a global climate model and compared to the observations obtained at the Dumont d’Urville coast station, obtained by a Micro Rain Radar (MRR). The LMDz/IPSL general circulation model, with zoomed configuration over Dumont d’Urville, has been considered for this study. A sensitivity study was conducted on the physical and numerical parameters of the LMDz model with the aim of estimating their contribution to the precipitation simulation. Sensitivity experiments revealed that changes in the sedimentation and sublimation parameters do not significantly impact precipitation rate. However, dissipation of the LMDz model, which is a numerical process that dissipates spatially excessive energy and keeps the model stable, impacts precipitation indirectly but very strongly. A suitable adjustment of the dissipation reduces significantly precipitation over Antarctic peripheral area, thus providing a simulated profile in better agreement with the MRR observations.В текущем тренде изменения климата на полюсах одна из задач проекта APRES3 (Дистанционное зондирование осадков в Антарктике с поверхности и из космоса) заключается в том, чтобы уточнить вертикальную структуру осадков и повысить качество их прогноза. Известные результаты моделирования осадков в Антарктиде базируются на данных с высокой степенью неопределенности и сильно разнятся. Исследование избирательной чувствительности расчета осадков проводилось на основе глобальной климатической модели и сопоставлялось с наблюдениями, полученными с помощью метеорадара (MRR) на береговой станции Дюмон-д’Юрвиль. Использовалась LMDz/IPSL-модель общей циркуляции с повышенной детализацией в районе станции Дюмон-д’Юрвиль. Была выполнена оценка вклада физических и численных параметров данной модели в расчет осадков. Вычислительные эксперименты показали, что изменения параметров седиментации и сублимации не влияют существенно на прогнозируемую скорость выпадения осадков. Однако диссипация, возникающая в модели LMDz в процессе вычислений, рассеивая пространственно избыточную энергию и обеспечивая устойчивость модели, хотя и косвенно, но очень сильно влияет на рассчитываемую величину осадков. Адекватная подгонка уровня рассеивания при моделировании значительно снижает количество осадков в периферийных районах Антарктики, обеспечивая таким образом лучшее согласование моделируемого профиля с данными метеорадарных наблюдений

    Angioimmunoblastic T-cell lymphoma and Kaposi sarcoma: A fortuitous collision?

    Get PDF
    Follicular helper T-cell (TFH) lymphoma of the angioimmunoblastic-type (AITL), one of the most prevalent T-cell lymphomas, typically encompasses proliferation of high endothelial venules and Epstein-Barr virus-positive immunoblasts, but neither infection with HHV8 nor association with Kaposi's sarcoma (KS) have been described. The aims of this study are to characterise the association between AITL and HHV8 infection or KS. Three male patients aged 49-76 years, HIV-negative, with concurrent nodal involvement by AITL and KS, were identified from our files and carefully studied. Two patients originated from countries where endemic KS occurs, including one with cutaneous KS. The lymphomas featured abundant vessels, expanded follicular dendritic cells and neoplastic TFH cells [PD1+ (three of three), ICOS+ (three of three), CXCL13+ (three of three), CD10 <sup>+</sup> (two of three), BCL6 (two of three)] but lacked EBV+ immunoblasts. The foci of KS consisted of subcapsular proliferations of ERG+, CD31 <sup>+</sup> and/or CD34 <sup>+</sup> , HHV8+ spindle cells. High-throughput sequencing showed AITL-associated mutations in TET2 (three of three), RHOA (G17V) (three of three) and IDH2 (R172) (two of three), which were absent in the microdissected KS component in two cases. Relapses in two patients consisted of AITL, without evidence of KS. No evidence of HHV8 infection was found in a control group of 23 AITL cases. Concurrent nodal involvement by AITL and KS is rare and identification of both neoplastic components may pose diagnostic challenges. The question of whether the association between AITL and KS may be fortuitous or could reflect the underlying immune dysfunction in AITL remains open

    Experimental demonstration of extended depth-of-field f/1.2 visible High Definition camera with jointly optimized phase mask and real-time digital processing

    Get PDF
    Increasing the depth of field (DOF) of compact visible high resolution cameras while maintaining high imaging performance in the DOF range is crucial for such applications as night vision goggles or industrial inspection. In this paper, we present the end-to-end design and experimental validation of an extended depth-of-field visible High Definition camera with a very small f-number, combining a six-ring pyramidal phase mask in the aperture stop of the lens with a digital deconvolution. The phase mask and the deconvolution algorithm are jointly optimized during the design step so as to maximize the quality of the deconvolved image over the DOF range. The deconvolution processing is implemented in real-time on a Field-Programmable Gate Array and we show that it requires very low power consumption. By mean of MTF measurements and imaging experiments we experimentally characterize the performance of both cameras with and without phase mask and thereby demonstrate a significant increase in depth of field of a factor 2.5, as it was expected in the design step
    corecore