12 research outputs found

    Chronic subordinate colony housing paradigm: A mouse model to characterize the consequences of insufficient glucocorticoid signalling

    Get PDF
    Chronic, in particular chronic psychosocial, stress is a burden of modern societies and known to be a risk factor for numerous somatic and affective disorders (in detail referenced below). However, based on the limited existence of appropriate, and clinically-relevant, animal models for studying the effects of chronic stress, the detailed behavioural, physiological, neuronal, and immunological mechanisms linking stress and such disorders are insufficiently understood. To date, most chronic stress studies in animals employ intermittent exposure to the same (homotypic) or to different (heterotypic) stressors of varying duration and intensity. Such models are only of limited value, since they do not adequately reflect the chronic, and continuous, situation that humans typically experience. Furthermore, application of different physical or psychological stimuli renders comparisons to the mainly psychosocial stressors faced by humans, as well as between the different stress studies almost impossible. In contrast, rodent models of chronic psychosocial stress represent situations more akin to those faced by humans and consequently seem to hold more clinical relevance. Our laboratory has developed a model in which mice are exposed to social stress for 19 continuous days, namely the chronic subordinate colony housing (CSC) paradigm, which bridges this gap. The main aim of the current review article is to provide a detailed summary of the behavioural, physiological, neuronal and immunological consequences of the CSC paradigm, and wherever possible relate the findings to other stress models and to those from human studies

    Selective breeding for high anxiety introduces a synonymous SNP that increases neuropeptide s receptor activity.

    Get PDF
    Neuropeptide S (NPS) has generated substantial interest due to its anxiolytic and fear-attenuating effects in rodents, while a corresponding receptor polymorphism associated with increased NPS receptor (NPSR1) surface expression and efficacy has been implicated in an increased risk of panic disorder in humans. To gain insight into this paradox, we examined the NPS system in rats and mice bred for high anxiety-related behavior (HAB) versus low anxiety-related behavior, and, thereafter, determined the effect of central NPS administration on anxiety- and fear-related behavior. The HAB phenotype was accompanied by lower basal NPS receptor (Npsr1) expression, which we could confirm via in vitro dual luciferase promoter assays. Assessment of shorter Npsr1 promoter constructs containing a sequence mutation that introduces a glucocorticoid receptor transcription factor binding site, confirmed via oligonucleotide pull-down assays, revealed increased HAB promoter activity-an effect that was prevented by dexamethasone. Analogous to the human NPSR1 risk isoform, functional analysis of a synonymous single nucleotide polymorphism in the coding region of HAB rodents revealed that it caused a higher cAMP response to NPS stimulation. Assessment of the behavioral consequence of these differences revealed that intracerebroventricular NPS reversed the hyperanxiety of HAB rodents as well as the impaired cued-fear extinction in HAB rats and the enhanced fear expression in HAB mice, respectively. These results suggest that alterations in the NPS system, conserved across rodents and humans, contribute to innate anxiety and fear, and that HAB rodents are particularly suited to resolve the apparent discrepancy between the preclinical and clinical findings to date

    Adrenal gland plasticity in lactating rats and mice is sufficient to maintain basal hypersecretion of corticosterone

    No full text
    Increased basal glucocorticoid secretion and a reduced glucocorticoid response during acute stress, despite only minor changes in the secretion of the major secretagogue adrenocorticotropic hormone (ACTH), have been documented in the peripartum period in several species. We recently showed that the adrenal gland, the site of glucocorticoid synthesis, undergoes substantial postpartum-associated plasticity in the rat at mid-lactation. Here, we asked the question whether adrenal changes already take place around parturition in the rat and in another species, namely the mouse. After demonstrating that several components of the adrenal machinery mediating cholesterol supply for steroidogenesis, including protein levels of hormone-sensitive lipase, low-density lipoprotein receptor (LDLR) and scavenger receptor class-B type-1 (SRB1), are upregulated, while hydroxymethylglutaryl coenzyme A reductase (HMGCR) is downregulated in the lactating rat one day after delivery, as previously observed at mid-lactation, we demonstrated profound changes in the mouse. In detail, protein expression of LDLR, SRB1, HMGCR and adrenal lipid store density were increased in the mouse adrenal one day after parturition as tested via western blot analysis and oil-red lipid staining, respectively. Moreover, using in vitro culture techniques, we observed that isolated adrenal explants from lactating mice secreted higher levels of corticosterone under basal conditions, but showed impaired responsiveness to ACTH, mimicking the in vivo scenario. These results suggest that mechanisms of adaptation in the maternal adrenal after delivery, namely increased cholesterol availability and decreased ACTH sensitivity, are crucial for the basal increase in circulating glucocorticoids and maternal stress hyporesponsiveness that are typical of this period

    Biomarkers for classification and class prediction of stress in a murine model of chronic subordination stress.

    No full text
    Selye defined stress as the nonspecific response of the body to any demand and thus an inherent element of all diseases. He reported that rats show adrenal hypertrophy, thymicolymphatic atrophy, and gastrointestinal ulceration, referred to as the stress triad, upon repeated exposure to nocuous agents. However, Selye's stress triad as well as its extended version including reduced body weight gain, increased plasma glucocorticoid (GC) concentrations, and GC resistance of target cells do not represent reliable discriminatory biomarkers for chronic stress. To address this, we collected multivariate biological data from male mice exposed either to the preclinically validated chronic subordinate colony housing (CSC) paradigm or to single-housed control (SHC) condition. We then used principal component analysis (PCA), top scoring pairs (tsp) and support vector machines (SVM) analyses to identify markers that discriminate between chronically stressed and non-stressed mice. PCA segregated stressed and non-stressed mice, with high loading for some of Selye's stress triad parameters. The tsp analysis, a simple and highly interpretable statistical approach, identified left adrenal weight and relative thymus weight as the pair with the highest discrimination score and prediction accuracy validated by a blinded dataset (92% p-value < 0.0001; SVM model = 83% accuracy and p-value < 0.0001). This finding clearly shows that simultaneous consideration of these two parameters can be used as a reliable biomarker of chronic stress status. Furthermore, our analysis highlights that the tsp approach is a very powerful method whose application extends beyond what has previously been reported

    Individual differences in stress vulnerability: The role of gut pathobionts in stress-induced colitis

    No full text
    Chronic subordinate colony housing (CSC), an established mouse model for chronic psychosocial stress, promotes a microbial signature of gut inflammation, characterized by expansion of Proteobacteria, specifically Helicobacter spp., in association with colitis development. However, whether the presence of Helicobacter spp. during CSC is critically required for colitis development is unknown. Notably, during previous CSC studies performed at Regensburg University (University 1), male specific-pathogen-free (SPF) CSC mice lived in continuous subordination to a physically present and Helicobacter spp.-positive resident. Therefore, it is likely that CSC mice were colonized, during the CSC procedure, with Helicobacter spp. originating from the dominant resident. In the present study we show that employing SPF CSC mice and Helicobacter spp.-free SPF residents at Ulm University (University 2), results in physiological responses that are typical of chronic psychosocial stress, including increased adrenal and decreased thymus weights, decreased adrenal in vitro adrenocorticotropic hormone (ACTH) responsiveness, and increased anxiety-related behavior. However, in contrast to previous studies that used Helicobacter spp.-positive resident mice, use of Helicobacter spp.-negative resident mice failed to induce spontaneous colitis in SPF CSC mice. Consistent with the hypothesis that the latter is due to a lack of Helicobacter spp. transmission from dominant residents to subordinate mice during the CSC procedure, colonization of SPF residents with Helicobacter typhlonius at University 2, prior to the start of the CSC model, rescued the colitis-inducing potential of CSC exposure. Furthermore, using SPF CSC mice and H. typhlonius-free SPF residents at University 1 prevented CSC-induced colitis. In summary, our data support the hypothesis that the presence or absence of exposure to certain pathobionts contributes to individual variability in susceptibility to stress-/trauma-associated pathologies and to reproducibility of stress-related outcomes between laboratories. Keywords: Chronic psychosocial stress; Chronic subordinate colony housing (CSC); Enterohepatic Helicobacter species (EHS); Inflammatory bowel disease (IBD); Microbiota; Colitis; Stress vulnerability; Stress resilience; Inflammation; Pathobiont

    Individual differences in stress vulnerability: The role of gut pathobionts in stress-induced colitis

    No full text
    Chronic subordinate colony housing (CSC), an established mouse model for chronic psychosocial stress, promotes a microbial signature of gut inflammation, characterized by expansion of Proteobacteria, specifically Helicobacter spp., in association with colitis development. However, whether the presence of Helicobacter spp. during CSC is critically required for colitis development is unknown. Notably, during previous CSC studies performed at Regensburg University (University 1), male specific-pathogen-free (SPF) CSC mice lived in continuous subordination to a physically present and Helicobacter spp.-positive resident. Therefore, it is likely that CSC mice were colonized, during the CSC procedure, with Helicobacter spp. originating from the dominant resident. In the present study we show that employing SPF CSC mice and Helicobacter spp.-free SPF residents at Ulm University (University 2), results in physiological responses that are typical of chronic psychosocial stress, including increased adrenal and decreased thymus weights, decreased adrenal in vitro adrenocorticotropic hormone (ACTH) responsiveness, and increased anxiety-related behavior. However, in contrast to previous studies that used Helicobacter spp.-positive resident mice, use of Helicobacter spp.-negative resident mice failed to induce spontaneous colitis in SPF CSC mice. Consistent with the hypothesis that the latter is due to a lack of Helicobacter spp. transmission from dominant residents to subordinate mice during the CSC procedure, colonization of SPF residents with Helicobacter typhlonius at University 2, prior to the start of the CSC model, rescued the colitis-inducing potential of CSC exposure. Furthermore, using SPF CSC mice and H. typhlonius-free SPF residents at University 1 prevented CSC-induced colitis. In summary, our data support the hypothesis that the presence or absence of exposure to certain pathobionts contributes to individual variability in susceptibility to stress-/trauma-associated pathologies and to reproducibility of stress-related outcomes between laboratories. (C) 2016 Elsevier Inc. All rights reserved

    Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice

    No full text
    The prevalence of inflammatory diseases is increasing in modern urban societies. Inflammation increases risk of stress-related pathology; consequently, immunoregulatory or antiinflammatory approaches may protect against negative stress-related outcomes. We show that stress disrupts the homeostatic relationship between the microbiota and the host, resulting in exaggerated inflammation. Repeated immunization with a heat-killed preparation of Mycobacterium vaccae, an immunoregulatory environmental microorganism, reduced subordinate, flight, and avoiding behavioral responses to a dominant aggressor in a murine model of chronic psychosocial stress when tested 1-2wk following the final immunization. Furthermore, immunization with M. vaccae prevented stress-induced spontaneous colitis and, in stressed mice, induced anxiolytic or fear-reducing effects as measured on the elevated plus-maze, despite stress-induced gut microbiota changes characteristic of gut infection and colitis. Immunization with M. vaccae also prevented stress-induced aggravation of colitis in a model of inflammatory bowel disease. Depletion of regulatory T cells negated protective effects of immunization with M. vaccae on stress-induced colitis and anxiety-like or fear behaviors. These data provide a framework for developing microbiome- and immunoregulation-based strategies for prevention of stress-related pathologies
    corecore