167 research outputs found

    Off-resonant emission of photon pairs in nonlinear optical cavities

    Get PDF
    Cavity-assisted spontaneous parametric down-conversion (SPDC) and spontaneous four-wave mixing (SFWM) in nonlinear optical materials are practical and versatile methods to generate narrowband time-energy entangled photon pairs. Time- energy entangled photons with tailored spectro-temporal properties are particularly useful for efficient quantum optical interfaces. In this work we study the generation of photon pairs in cavity-assisted SPDC and SFWM for the general case of off-resonant conversion, namely, when the frequencies of the generated photons do not match the cavity resonances. Such a frequency mismatch in particular depends on temperature and requires an additional control in the experiment. First, we propose a generic model, for description of cavity-assisted SPDC and SFWM. We show that in both processes the mismatch reduces the generation rate of photons, distorts the spectrum and the auto-correlation function of the generated fields, as well as affects the photon generation dynamics. Second, we verify the results experimentally using parametric generation of photon pairs in a nonlinear whispering gallery mode resonator (WGMR) as an experimental platform with controlled frequency mismatch. Our work reveals the role of the frequency mismatch in the photon generation process and shows a way to control it. Obtained results constitute one more step in the direction of full control over the spectro-temporal properties of entangled photon pairs and the heralded generation of single-photon pulses with a tailored temporal mode

    Hybrid-Entanglement in Continuous Variable Systems

    Get PDF
    Entanglement is one of the most fascinating features arising from quantum-mechanics and of great importance for quantum information science. Of particular interest are so-called hybrid-entangled states which have the intriguing property that they contain entanglement between different degrees of freedom (DOFs). However, most of the current continuous variable systems only exploit one DOF and therefore do not involve such highly complex states. We break this barrier and demonstrate that one can exploit squeezed cylindrically polarized optical modes to generate continuous variable states exhibiting entanglement between the spatial and polarization DOF. We show an experimental realization of these novel kind of states by quantum squeezing an azimuthally polarized mode with the help of a specially tailored photonic crystal fiber

    A 4-year longitudinal study investigating the relationship between flexible school starts and grades

    Get PDF
    The mismatch between teenagers’ late sleep phase and early school start times results in acute and chronic sleep reductions. This is not only harmful for learning but may reduce career prospects and widen social inequalities. Delaying school start times has been shown to improve sleep at least short-term but whether this translates to better achievement is unresolved. Here, we studied whether 0.5–1.5 years of exposure to a flexible school start system, with the daily choice of an 8 AM or 8:50 AM-start, allowed secondary school students (n = 63–157, 14–21 years) to improve their quarterly school grades in a 4-year longitudinal pre-post design. We investigated whether sleep, changes in sleep or frequency of later starts predicted grade improvements. Mixed model regressions with 5111–16,724 official grades as outcomes did not indicate grade improvements in the flexible system per se or with observed sleep variables nor their changes—the covariates academic quarter, discipline and grade level had a greater effect in our sample. Importantly, our finding that intermittent sleep benefits did not translate into detectable grade changes does not preclude improvements in learning and cognition in our sample. However, it highlights that grades are likely suboptimal to evaluate timetabling interventions despite their importance for future success

    Proton inelastic scattering to continuum studied with antisymmetrized molecular dynamics

    Get PDF
    Intermediate energy (p,p′'x) reaction is studied with antisymmetrized molecular dynamics (AMD) in the cases of 58^{58}Ni target with Ep=120E_p = 120 MeV and 12^{12}C target with Ep=E_p = 200 and 90 MeV. Angular distributions for various Ep′E_{p'} energies are shown to be reproduced well without any adjustable parameter, which shows the reliability and usefulness of AMD in describing light-ion reactions. Detailed analyses of the calculations are made in the case of 58^{58}Ni target and following results are obtained: Two-step contributions are found to be dominant in some large angle region and to be indispensable for the reproduction of data. Furthermore the reproduction of data in the large angle region \theta \agt 120^\circ for Ep′E_{p'} = 100 MeV is shown to be due to three-step contributions. Angular distributions for E_{p'} \agt 40 MeV are found to be insensitive to the choice of different in-medium nucleon-nucleon cross sections σNN\sigma_{NN} and the reason of this insensitivity is discussed in detail. On the other hand, the total reaction cross section and the cross section of evaporated protons are found to be sensitive to σNN\sigma_{NN}. In the course of the analyses of the calculations, comparison is made with the distorted wave approach.Comment: 16 pages, 7 Postscript figure

    Studies of the Giant Dipole Resonance in 27^{27}Al, 40^{40}Ca, 56^{56}Fe, 58^{58}Ni and 208^{208}Pb with high energy-resolution inelastic proton scattering under 0∘^\circ

    Full text link
    A survey of the fine structure of the Isovector Giant Dipole Resonance (IVGDR) was performed, using the recently commissioned zero-degree facility of the K600 magnetic spectrometer at iThemba LABS. Inelastic proton scattering at an incident energy of 200 MeV was measured on 27^{27}Al, 40^{40}Ca, 56^{56}Fe, 58^{58}Ni and 208^{208}Pb. A high energy resolution (ΔE≃\rm{\Delta}\it{E} \simeq 40 keV FWHM) could be achieved after utilising faint-beam and dispersion-matching techniques. Considerable fine structure is observed in the energy region of the IVGDR and characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The comparison with Quasiparticle-Phonon Model (QPM) calculations provides insight into the relevance of different giant resonance decay mechanisms. Photoabsorption cross sections derived from the data assuming dominance of relativistic Coulomb excitation are in fair agreement with previous work using real photons.Comment: 15 pages, 15 figure

    Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip

    Get PDF
    Nonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices. In particular, frequency conversion based on orthogonally polarized beams has not yet been demonstrated on chip. Here we show frequency mixing between orthogonal polarization modes in a compact integrated microring resonator and demonstrate a bi-chromatically pumped optical parametric oscillator. Operating the device above and below threshold, we directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can find applications, for example, in optical communication and quantum optics

    Wavelet signatures of KK-splitting of the Isoscalar Giant Quadrupole Resonance in deformed nuclei from high-resolution (p,p′') scattering off 146,148,150^{146,148,150}Nd

    Get PDF
    The phenomenon of fine structure of the Isoscalar Giant Quadrupole Resonance (ISGQR) has been studied with high energy-resolution proton inelastic scattering at iThemba LABS in the chain of stable even-mass Nd isotopes covering the transition from spherical to deformed ground states. A wavelet analysis of the background-subtracted spectra in the deformed 146,148,150Nd isotopes reveals characteristic scales in correspondence with scales obtained from a Skyrme RPA calculation using the SVmas10 parameterization. A semblance analysis shows that these scales arise from the energy shift between the main fragments of the K = 0, 1 and K = 2 components.Comment: 7 pages, 6 figure

    Study of the nucleon-induced preequilibrium reactions in terms of the Quantum Molecular Dynamics

    Get PDF
    The preequilibrium (nucleon-in, nucleon-out) angular distributions of 27^{27}Al, 58^{58}Ni and 90^{90}Zr have been analyzed in the energy region from 90 to 200 MeV in terms of the Quantum Moleculear Dynamics (QMD) theory. First, we show that the present approach can reproduce the measured (p,xp') and (p,xn) angular distributions leading to continuous final states without adjusing any parameters. Second, we show the results of the detailed study of the preequilibrium reaction processes; the step-wise contribution to the angular distribution, comparison with the quantum-mechanical Feshbach-Kerman-Koonin theory, the effects of momentum distribution and surface refraction/reflection to the quasifree scattering. Finally, the present method was used to assess the importance of multiple preequilibrium particle emission as a function of projectile energy up to 1 GeV.Comment: 22pages, Revex is used, 10 Postscript figures are available by request from [email protected]

    Measurement of p + d -> 3He + eta in S(11) Resonance

    Full text link
    We have measured the reaction p + d -> 3He + eta at a proton beam energy of 980 MeV, which is 88.5 MeV above threshold using the new ``germanium wall'' detector system. A missing--mass resolution of the detector system of 2.6% was achieved. The angular distribution of the meson is forward peaked. We found a total cross section of (573 +- 83(stat.) +- 69(syst.))nb. The excitation function for the present reaction is described by a Breit Wigner form with parameters from photoproduction.Comment: 8 pages, 2 figures, corrected typos in heade

    Birefringence and dispersion of cylindrically polarized modes in nanobore photonic crystal fiber

    Full text link
    We demonstrate experimentally and theoretically that a nanoscale hollow channel placed centrally in the solid glass core of a photonic crystal fiber strongly enhances the cylindrical birefringence (the modal index difference between radially and azimuthally polarized modes). Furthermore, it causes a large split in group velocity and group velocity dispersion. We show analytically that all three parameters can be varied over a wide range by tuning the diameters of the nanobore and the core
    • …
    corecore