27 research outputs found

    Nanomaterials to avoid and destroy protein aggregates

    Get PDF
    Aggregation of proteins is involved in many disorders. Besides amyloid fibrils, which mostly form in the brain, other kind of protein aggregates can lead, for example, to clots in the blood or floaters in the vitreous of the eye. This review aims to overview on how nanomaterials could be employed to avoid and destroy most diverse protein aggregates. Indeed, thanks to their recognized versatility, (stimuli-responsive) nanomaterials may offer attractive features against harmful protein aggregates. However, despite the many conceptually interesting strategies it appears that most important information on both the in vivo efficacy and safety of nanotechnology based prevention or destruction of protein aggregates, which is highly needed to pave the way to clinically relevant therapies, remains missing

    Comparison of MRI properties between multimeric DOTAGA and DO3A gadolinium-dendron conjugates

    Get PDF
    The inherent lack of sensitivity of MRI needs the development of new Gd contrast agents in order to extend 20Hz,37%, the application of this technique to cellular imaging. For this purpose, two multimeric MR contrast agents obtained by peptidic coupling between an amido amine dendron and GdDOTAGA chelates (premetalation strategy, G1-4GdDOTAGA) or DO3A derivatives which then were postmetalated (G1-4GdDO-3A) have been prepared. By comparison to the monomers, an increase of longitudinal relaxivity has been observed for both structures. Especially for G1-4GdDO-3A, a marked increase is observed between 20 and 60 MHz. This structure differs from G1-4GdDOTAGA by an increased rigidity due to the aromatic linker between each chelate and the organic framework. This has the effect of limiting local rotational movements, which has a positive impact on relaxivity

    Photoablation of human vitreous opacities by light-induced vapor nanobubbles

    Get PDF
    Myopia, diabetes, and aging are the main causes of progressive vitreous collagen aggregation, resulting in vitreous opacities, which can significantly disturb vision. As vitreous opacities, which induce the visual phenomenon of "floaters", are accessible with nanomaterials and light, we propose a nanotechnology-based approach to locally ablate them with highly reduced light energy compared to the more traditional YAG laser therapy. Our strategy relies on the plasmon properties of gold nanoparticles that generate vapor nanobubbles upon pulsed-laser illumination whose mechanical force can ablate vitreous opacities. We designed gold nanoparticles coated with hyaluronic acid (HA), which have excellent diffusional mobility in human vitreous, an essential requirement to reach the vitreous opacities. In addition, we found that HA-coated gold nanoparticles can accumulate extensively on human vitreous opacities that were obtained by vitrectomy from patients with vision-degrading myodesopsia. When subsequently applying nanosecond laser pulses, the collagen aggregates were efficiently destroyed with similar to 1000 times less light energy than typically used in YAG laser therapy. This low-energy "floater-specific destruction", which is due to the accumulation of the small gold nanoparticles on the opacities, is attractive, as it may be safer to the surrounding ocular tissues while at the same time being easier and faster to apply compared to YAG laser therapy, where the opacities need to be ablated piece by piece by a tightly focused laser beam. Gold nanoparticle-assisted photoablation may therefore provide a safer, faster, and more reliable destruction of vitreous opacities in the treatment of ophthalmologic diseases

    Challenges and strategies for the delivery of biologics to the cornea

    No full text
    Biologics, like peptides, proteins and nucleic acids, have proven to be promising drugs for the treatment of numerous diseases. However, besides the off label use of the monoclonal antibody bevacizumab for the treatment of corneal neovascularization, to date no other biologics for corneal diseases have reached the market. Indeed, delivering biologics in the eye remains a challenge, especially at the level of the cornea. While it appears to be a rather accessible tissue for the administration of drugs, the cornea in fact presents several anatomical barriers to delivery. In addition, also intracellular delivery barriers need to be overcome to achieve a promising therapeutic outcome with biologics. This review outlines efforts that have been reported to successfully deliver biologics into the cornea. Biochemical and physical methods for achieving delivery of biologics in the cornea are discussed, with a critical view on their efficacy in overcoming corneal barriers

    In Vitro and Ex Vivo Models for Assessing Drug Permeation across the Cornea

    No full text
    Drugpermeation across the cornea remains a major challenge dueto its unique and complex anatomy and physiology. Static barrierssuch as the different layers of the cornea, as well as dynamic aspectssuch as the constant renewal of the tear film and the presence ofthe mucin layer together with efflux pumps, all present unique challengesfor effective ophthalmic drug delivery. To overcome some of the currentophthalmic drug limitations, the identification and testing of noveldrug formulations such as liposomes, nanoemulsions, and nanoparticlesbegan to be considered and widely explored. In the early stages ofcorneal drug development reliable in vitro and ex vivo alternatives, are required, to be in line with theprinciples of the 3Rs (Replacement, Reduction, and Refinement), withsuch methods being in addition faster and more ethical alternativesto in vivo studies. The ocular field remains limitedto a handful of predictive models for ophthalmic drug permeation. In vitro cell culture models are increasingly used whenit comes to transcorneal permeation studies. Ex vivo models using excised animal tissue such as porcine eyes are themodel of choice to study corneal permeation and promising advancementshave been reported over the years. Interspecies characteristics mustbe considered in detail when using such models. This review updatesthe current knowledge about in vitro and ex vivo corneal permeability models and evaluates theiradvantages and limitations

    Photothermal nanomaterial-mediated photoporation

    No full text
    Delivering biological effector molecules in cultured cells is of fundamental importance to any study or application in which the modulation of gene expression is required. Examples range from generating engineered cell lines for studying gene function to the engineering of cells for cell-based therapies such as CAR-T cells and gene-corrected stem cells for regenerative medicine. It remains a great challenge, however, to deliver biological effector molecules across the cell membrane with minimal adverse effects on cell viability and functionality. While viral vectors have been frequently used to introduce foreign nucleic acids into cells, their use is associated with safety concerns such as immunogenicity, high manufacturing cost, and limited cargo capacity.For photoporation, depending on the laser energy, membrane permeabilization happens either by local heating or by laser-induced water vapor nanobubbles (VNB). In our first study on this topic, we demonstrated that the physical force exerted by suddenly formed VNB leads to more efficient intracellular delivery as compared to mere heating. Next, we explored the use of different photothermal nanomaterials, finding that graphene quantum dots display enhanced thermal stability compared to the more traditionally used gold nanoparticles, hence providing the possibility to increase the delivery efficiency by repeated laser activation. To enable its use for the production of engineered therapeutic cells, it would be better if contact with cells with nondegradable nanoparticles is avoided as it poses toxicity and regulatory concerns. Therefore, we recently demonstrated that photoporation can be performed with biodegradable polydopamine nanoparticles as well. Alternatively, we demonstrated that nanoparticle contact can be avoided by embedding the photothermal nanoparticles in a substrate made from biocompatible electrospun nanofibers. With this variety of photoporation approaches, over the years we demonstrated the successful delivery of a broad variety of biologics (mRNA, siRNA, Cas9 ribonucleoproteins, nanobodies, etc.) in many different cell types, including hard-to-transfect cells such as T cells, embryonic stem cells, neurons, and macrophages. In this Account, we will first start with a brief introduction of the general concept and a historical development of photoporation. In the next two sections, we will extensively discuss the various types of photothermal nanomaterials which have been used for photoporation. We discriminate two types of photothermal nanomaterials: single nanostructures and composite nanostructures. The first one includes examples such as gold nanoparticles, graphene quantum dots, and polydopamine nanoparticles. The second type includes polymeric films and nanofibers containing photothermal nanoparticles as well as composite nanoscale biolistic nanostructures. A thorough discussion will be given for each type of photothermal nanomaterial, from its synthesis and characterization to its application in photoporation, with its advantages and disadvantages. In the final section, we will provide an overall discussion and elaborate on future perspectives

    Synthesis and Biological Activity of 3-(Heteroaryl)quinolin-2(1H)-ones Bis-Heterocycles as Potential Inhibitors of the Protein Folding Machinery Hsp90

    Get PDF
    In the context of our SAR study concerning 6BrCaQ analogues as C-terminal Hsp90 inhibitors, we designed and synthesized a novel series of 3-(heteroaryl)quinolin-2(1H), of types 3, 4, and 5, as a novel class of analogues. A Pd-catalyzed Liebeskind–Srogl cross-coupling was developed as a convenient approach for easy access to complex purine architectures. This series of analogues showed a promising biological effect against MDA-MB231 and PC-3 cancer cell lines. This study led to the identification of the best compounds, 3b (IC50 = 28 µM) and 4e, which induce a significant decrease of CDK-1 client protein and stabilize the levels of Hsp90 and Hsp70 without triggering the HSR response

    A cell impedance-based real-time in vitro assay to assess the toxicity of amphotericin B formulations

    No full text
    International audienceAerosolized liposomal amphotericin B (L-AmB) has been investigated as prophylaxis against invasive aspergil-losis. However, the clinical results are controversial and some trials suggest that toxicity could be a limitation for wider use. Our aim was to assess the dynamics of cell toxicity induced in a human alveolar epithelial cell line (A549) after exposure to LAmB (50 to 400 μg/ml) or amphotericin B deoxycholate (D-AmB; 50 to 200 μg/ml) by monitoring real-time A549 cell viability using an impedance-based technology. Results were expressed as cell index values integrating cell adhesion, proliferation, and survival. In parallel, the gene expression of proin-flammatory cytokines was quantified at 6 and 24 h after drug addition by real-time RT-PCR on cell lysates. No sustained reduction of cell indexes was observed with LAmB or empty liposomes, even at 400 μg/ml. Only the highest concentration tested of LAmB (400 μg/ml) yielded transient significant 6-fold and 4-fold induction of TNF-α and IL-8 mRNAs, respectively. In contrast, D-AmB induced a decrease in cell indexes and only the 50 μg/ ml concentration of D-AmB was followed by cell recovery, higher concentrations leading to cell death. Significant 4-fold, 7-fold and 3-fold inductions of TNF-α, IL-8 and IL-33 mRNAs were also observed at 6 h with 50 μg/ml of D-AmB. In conclusion, continuous cell impedance measurement showed no toxicity on overall cellular behavior although a slight proinflammatory cytokine expression is possible after LAmB challenge. Real-time kinetics of cell impedance is an interesting tool for initial screening of cell toxicity

    Concentration gradients in material sciences : methods to design and biomedical applications

    No full text
    Concentration gradients are at the basis of many natural phenomena and hold great importance in human and plant biology. This basic phenomenon has inspired many material scientists to confer novel and original properties to materials with numerous biomedical and pharmaceutical applications such as drug discovery, controlled release of drugs, tissue engineering, orthopedic implants and time-temperature indicators, amongst others. While the generation of gradients in solution is well described, their incorporation in solid materials remains challenging. This study reviews concepts and methods reported to generate gradients in respective solutions and (at the surface or in) solid materials like polymer scaffolds and matrices. This article also discusses how innovative materials possessing such gradients may be applied in biomedicine and pharmacy

    Photodisruption of the Inner Limiting Membrane: Exploring ICG Loaded Nanoparticles as Photosensitizers

    No full text
    The inner limiting membrane (ILM) represents a major bottleneck hampering efficient drug delivery to the retina after intravitreal injection. To overcome this barrier, we intend to perforate the ILM by use of a light-based approach which relies on the creation of vapor nanobubbles (VNBs) when irradiating photosensitizers with high intensity laser pulses. Upon collapse of these VNBs, mechanical effects can disrupt biological structures. As a photosensitizer, we explore indocyanine green (ICG) loaded nanoparticles (NPs) specifically designed for our application. In light of this, ICG liposomes and PLGA ICG NPs were characterized in terms of physicochemical properties, ICG incorporation and VNB formation. ICG liposomes were found to encapsulate significantly higher amounts of ICG compared to PLGA ICG NPs which is reflected in their VNB creating capacity. Since only ICG liposomes were able to induce VNB generation, this class of NPs was further investigated on retinal explants. Here, application of ICG liposomes followed by laser treatment resulted in subtle disruption effects at the ILM where zones of fully ablated ILM were alternated by intact regions. As the interaction between the ICG liposomes and ILM might be insufficient, active targeting strategies or other NP designs might improve the concept to a further extent
    corecore