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Abstract: In the context of our SAR study concerning 6BrCaQ analogues as C-terminal Hsp90
inhibitors, we designed and synthesized a novel series of 3-(heteroaryl)quinolin-2(1H), of types 3, 4,
and 5, as a novel class of analogues. A Pd-catalyzed Liebeskind–Srogl cross-coupling was developed
as a convenient approach for easy access to complex purine architectures. This series of analogues
showed a promising biological effect against MDA-MB231 and PC-3 cancer cell lines. This study led
to the identification of the best compounds, 3b (IC50 = 28 µM) and 4e, which induce a significant
decrease of CDK-1 client protein and stabilize the levels of Hsp90 and Hsp70 without triggering the
HSR response.

Keywords: Hsp90; 6BrCaQ; 3-(heteroaryl)quinolin-2(1H)-ones; purines; cytotoxicity

1. Introduction

The 90-kDa heat shock protein (Hsp90) has emerged recently as a promising therapeu-
tic target for the treatment of cancer [1–5] and other diseases [6,7]. As a chaperone protein,
Hsp90 is evolved in the conformational maturation, folding, stabilization, activation, and
degradation of over 400 client proteins in healthy cells as well as in cancerous cells which
are directly associated with all hallmarks of cancer [8–11]. This Hsp90 chaperone cycle
depends on the ATPase activity. ATP binding to the N-terminal domain (NTD) and hy-
drolysis by Hsp90 drive a conformational cycle necessary for chaperone function [12–14].
The binding of ATP to each monomer shifts Hsp90 to a “closed” formation that can bind,
fold, and activate client proteins [15,16]. Thus, inhibition of Hsp90 function results in the
simultaneous interruption of many signal transduction pathways which are pivotal to
tumor progression and survival.

Several structurally distinct Hsp90 inhibitors that target the ATP binding pocket
are currently being evaluated for anticancer activity in numerous Phase II and several
Phase III clinical trials. However, they are ineffective over time due to the compensatory
mechanism involving the induction of a heat shock response. The expression of chaperones
Hsp27, Hsp70, Hsp40, and Hsp90 increases [17–19], leading to undesirable chemoprotective
effects [20–22]. Clinical resistance has been attributed to this chemoprotective effect, and
dosage increases to overcome resistance are not a viable option due to toxicity. These results
continue to motivate the pursuit of alternative strategies for modulating heat shock protein
complexes [23–25].

An alternative molecular mechanism of inhibition is through binding to the C-terminal
domain of Hsp90. The CTD has been implicated biochemically as the site of a possible
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second cryptic ATP-binding site on the protein. Its contribution to the overall regulation of
chaperone function is not clear, but some small molecules that interact with the C-terminal
domain, such as the antibiotic novobiocin [26] (Nvb, Figure 1) and coumermycin A1 (Cm
A1), induce client protein degradation without heat shock response induction [27–31],
giving new promise to Hsp90 inhibition for cancer treatments.
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Figure 1. Structure of novobiocin and 6BrCaQ compounds and the approach for the design of targeted
compounds 3, 4 and 5.

In this context, we previously reported a novel series of simplified 3 amido-quinolin-
2-one analogues related to Nvb as a class of highly potent hsp90 inhibitors [32–36]. From
the structure–activity relationship (SAR) studies, 6BrCaQ (Figure 1) [37,38] was identified
as a very promising C-terminal Hsp90 inhibitor displaying an antiproliferative activity
LC50 of 5–50 µM [39,40] against various cancer cell lines (MCF7, MDA MB231, Caco2,
IGROV, ISHIKAWA, PC3, and HT29 cells). Further studies on its mode of action revealed
that 6BrCaQ manifests downregulation of several Hsp90 client proteins (HER2, Raf-1 and
cdk-4), induces a high apoptosis level in MCF-7 breast cancer cell line and PC3. In addition,
encapsulated in liposomes, 6BrCaQ exerted an improved in vitro activity on breast cancer
cells (MDA-MB-231) and displays an in vivo anti-tumor activity on an orthotopic breast
cancer model in nude mice [40].

More recently, we demonstrated that conjugation of 6BrCaQ with the cationic head
triphenylphosphonium (TPP) leads to the conjugate 6BrCaQ-C10-TPP for the targeting of
the mitochondrial heat shock protein TRAP1. Hence, 6BrCaQ-C10-TPPdisplays an anti-
proliferative activity with mean GI50 values at a nanomolar level in a diverse set of human
cancer cells (GI50 = 0.008–0.30 µM) including MDA-MB-231, HT-29, HCT116, K562 and
PC-3 cancer cell lines. This study showed that this compound 6BrCaQ-C10-TPP induces
a significant mitochondrial membrane disruption and interferes with TRAP1 function in
colon carcinoma cells without inducing the heat-shock response HSF1 [41].

On the other hand, Blagg and co-workers reported during their various SAR studies
that the coumarin analogue (I) (Figure 1), which possesses a benzothiophen heterocycle
at the C3 position, is able to induce the cell death with an IC50 of 0.98 µM against SkBr3
cell lines [42]. Inspired by this study and the promising activity displayed by 6BrCaQ, we
proposed to design a news series of quinolinone based heterocycle analogues (Figure 1) in
which the amide function of 6BrCaQ will be replaced by various heterocycles, including
benzoxazoles, benzothiazoles, indoles, benzimidazoles, and purines, in the aim to better un-
derstand the SAR in this novel series. In this article, the synthesis and biological evaluation
of analogues of type 3, 4, and 5 are described.
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2. Results and Discussion
2.1. Chemistry

The first library of compounds targeted is simplified 3-(heteroaryl)quinolin-2(1H)-
ones 3 (Scheme 1). These analogues were synthesized by the palladium-catalyzed C-H
functionalization reaction of 3-bromoquinolin-2-(1H)-ones 1 with various azoles according
to our previously reported conditions [43]. The reactions take place rapidly in 1,4-dioxane
and proceed in good to excellent yields using bimetallic Pd(OAc)2/CuI as catalysts, PPh3 as
the ligand, and LiOtBu as the base. Under this convergent protocol, compounds 3a–f were
synthesized. These compounds were already reported in reference [43], fully characterized,
and their physical properties can also be found in ref [43]. Various heterocycles could be
introduced at the C3-position of the quinolin-2(1H)-one nucleus, including benzoxazole,
benzothiazole, indole, benzimidazole, and the SMe-purine (Scheme 1).
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In the pursuit of our SAR-study, we considered the possibility of functionalization
of the thiomethyl group attached to 6′-position of the purine motif in the derivative 3e.
This motif is found in a series of hsp90 inhibitors, such as PU-H71 disclosed in Figure 1.
If succeeded, this approach would provide a fast and easy access to a small library of
more sophisticated purine-quinolinone analogues. We have rationalized that an additional
aromatic group in molecule 1 would modify the intercalation ability due to changes in the
planarity and in the extension of conjugation.

After a detailed survey about this topic, only few examples of this derivatization of
thiopurines were found in the literature. One of the methodologies available to introduce
diversity in this particular position is the scarcely explored Liebeskind–Srogl coupling [44].
This approach exploits the pseudo-halogen character of CH3S- group (thio-organyl in
general) as partner in a Suzuki-like coupling reaction, involving an arylboronic acid under
palladium catalysis in the presence of a copper salt [45,46].

We decided to start our investigations with the adoption of two approaches. The first
one involved the coupling of thiopurinoquinolone 3e with p-methoxyphenyl-boronic acid
under PdDppfCl2·CH2Cl2 catalysis and conventional heating [47], while the second method
chosen to promote the desired transformation employed Pd(OAc)2 and 1,10-phenanthroline
under microwave irradiation [48]. To our delight, both approaches were capable to afford
the expected product 4a, in 61% and 49% yield, respectively (Scheme 2). In order to explore
the scope of this synthetic transformation, we decided to use the first method with a sort
of arylboronic acid. This selection was based on the rationale of the electronic and steric
effects exerted by the chosen substituents. The reactions proceeded smoothly, affording the
expected products 4a–h with yields ranging from 39% to 89% (Scheme 2).
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Taking advantage of this synthetic procedure, we decided to examine the scope of
Liebeskind–Srogl reaction with anilines (Scheme 3). The introduction of a nitrogen atom
at the 6′-position of the purine ring would imply its overall transformation into a nucleic
acid analogue, i.e., an [(N-phenyl)adenine] motif. The possibility to have an adenine ring
attached to a quinolone nucleus would increase its biological resemblance [49,50].
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It is interesting to denote that this reaction can also be reached by an alternative two-
step procedure involving the initial thioether-sulfone oxidation, followed by a nucleophilic
heteroaromatic substitution with the appropriate amine. This protocol has been previously
employed by Piguel and coworkers during the synthesis of 6,8,9-purine-derivatives [47].
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To the best of our knowledge, the introduction of an amine to the purine ring in 6′-position
through a Liebeskind–Srogl reaction has never been reported in the literature.

We started our investigations by adapting the arylsulfide amination protocol described
by the group of Murakami [51]. Unfortunately, only the degradation of starting material
3e was detected. Several conditions were assayed, including the palladium source, ligand,
base, and microwave heating [52–54]. To our surprise, with a slight modification of the
previously used PdDppf·Cl2/CuTC protocol, the reaction proceeded until completeness,
giving the desired product 5a in 67% yield (Scheme 3). It is important to observe that
the presence of CuTC and the Cs2CO3 base were mandatory to accomplish the expected
transformation.

Under this condition, we succeed to generate the coupling product from
3,4,5-trimethoxyaniline (5b, 51%). Unfortunately, however, the reaction of 3e with ani-
line, benzyamine, butylamine, and pyrrolidine could not be driven to completeness and
the expected product could not be separated from the starting material by current chro-
matographic purification conditions (CC and preparative TLC).

2.2. Biological Evaluation of Quinolones Analogues
Antiproliferative Activity

Upon completion of their syntheses, the in vitro activity of quinolone derivatives 3a–f,
4a–h, and 5a,b was evaluated by their growth-inhibitory potency in three cancer cell lines.
At first, the viability of the synthesized compounds was examined with the MDA-MB-231
MCF-7 breast cancer cell line at concentrations of 10 µM, 15 µM, and 25 µM. Prostate cancer
PC-3 cells and human fetal lung fibroblast MRC-5 cell lines were also subjected to this
series of compounds at a unique concentration of 15 µM. The quantification of cell survival
in these cell lines was established using MTS assays after 72 h exposure (Table 1), and GI50
values were estimated at the concentration required to produce 50% inhibition (Table 2).

As shown in Table 1, all these series of analogues induced a significant decrease
of the cell viability in MDA-MB-231 cells in a concentration depend manner. At 10 µM
concentration the viability percentage of MDA-MB-231 cells decreased until less than 47%
under 3a and 5a exposure (Table 1). In addition, increasing the concentration at 25 µM,
analogues 3a, 3b, 4g, and 4h importantly affect the growth of MDA-MB-231 cells (~30%
survival), clearly demonstrating the bioactivity potential of these compounds.

Then, the cytotoxicity activity was examined with two other cancer cell lines: PC-3
cells and human fetal lung fibroblast MRC-5. As shown in Table 1, almost all the reported
compounds do not present any effect against MRC-5 cell lines (>82% survival) at 15 µM
concentration, except compounds 4d, 4e, and 4g, which induce a slight effect on the growth
of MRC-5 cells (71% to 79% survival). In contrast, PC-3 cells seem to be more sensitive to
these derivatives than MRC-5 cells, as we can see in Table 1. Upon exposure of these cell
lines at 15 µM concentration, compounds 3b, 3h, 3e, and 4e were able to decrease the cell
viability in PC-3 cells until 56%.

Then, the growth inhibitory activities against PC-3 prostate cancer cell line were mea-
sured for the selected 3-heteroaryl-quinolin-2(1H)-one derivatives 3a–e. All the compounds
shown in Table 2 display an estimated GI50 ranging between 28 and 48 µM. Of the selected
derivatives, 3b showed a significant ability to inhibit cell growth and was the most cytotoxic
(GI50 = 28 µM) against the PC-3 prostate cancer cell lines.

To provide additional evidence of the growth inhibitory activity manifested by the
derivatives, the most active compounds 3a–e, 4e, and 5b were evaluated for their ability to
induce the degradation of Hsp90-dependent client protein Cdk4, the most widely studied
molecular signature indicative of Hsp90 blockade.
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Table 1. Cell viability effect of 3a–f, 4a–h and 5a,b derivatives against MDA-MB-231, PC-3 and MRC-5 cell lines measured through cell metabolic activity
(MTS-based assay).
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Table 2. GI50 (µM) values for anti-proliferative effects of selected compounds 3a–e [a].

Compound PC-3

6Br-CaQ 10
3a 48
3b 28
3c 37
3e 38

[a] GI50 is the concentration of compound needed to reduce cell growth by 50% following 72 h cell treatment with
the tested drug.

As depicted in Figure 2, the cyclin-dependant kinase CdK4 was degraded following
treatment with 3a–e, 4e, and 5b. The GAPDH protein was not affected by the tested
compounds, indicating the selective degradation of hsp90-dependent clients. CDK-4 level
was more decreased by compounds 3b and 4e at a concentration of 15 µM. One can note
that the anti-proliferative activity of 3b (IC50 = 28 µM, Table 2) and 4e correlate well with
the concentration needed to induce Hsp90/CDK-4 client protein degradation.
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Figure 2. Effects of quinolone analogues 3a–e, 4e and 5b on HSP90 machinery protein levels and on
CDK-4 stability. PC-3 cells were grown and exposed to Hsp90 inhibitors (3a–e, 4e and 5b, 15 µM)
as described in Experimental section for 72 h and cell lysates were analyzed by Western blotting
with regard to the levels of CDK-4, Hsp90α/β and Hsp70. NT corresponds to untreated cells; D,
DMSO-treated cells were used as controls, GADPH level is used for control in protein loading on gels.

Hsp90 N-terminal inhibitors induce a Heat-shock-response by releasing a transcription
factor (HSF1) of the genes of Hsp27, Hsp70, and Hsp90. This increase in transcription leads
to opposition, to apoptosis, and thus resistance to treatment.

It is important to check that the levels of these proteins are not increasing with our
compounds. We showed by Western blot that 3a–e, 4e, and 5b stabilize the levels of Hsp90
and Hsp70 without triggering the HSR. This result was already observed with 6-BrCaQ in
PC-3 cell lines, as we reported previously: liposomal 6-BrCaQ stabilized levels of Hsp70
and decreased the level of Hsp90 [40].

3. Conclusions

In summary, we have designed and synthesized a new series of 3-heteroaryl-quinolin-
2(1H)-one derivatives as potential Hsp90 inhibitors. During this study, we developed a Pd-
catalyzed Liebeskind–Srogl cross-coupling reaction between an SMe-containing quinolinyl-
purine derivative and various aryl boronic acids. We reported also, for the first time, that
anilines may be used as nucleophilic partners during this coupling. From these SAR studies,
3a–e, 4e, and 5b were found to display the strongest cell viability effect against MDA-MB
231 and PC-3 cancer cell lines. In addition, compounds 3b and 4e were found to be able to
induce a significant decrease of CDK-1 client protein and stabilize the levels of Hsp90 and
Hsp70 without triggering the HSR response.
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4. Materials and Methods
4.1. General Experimental Methods

The compounds were all identified by the usual physical methods, namely 1H-NMR,
13C-NMR, IR, and HRMS (ESI) (See supplementary materials). The 1H and 13C NMR
spectroscopic data were recorded on a Bruker Avance 300 FT-NMR (300.13 MHz for 1H
NMR and 75.48 MHz for 13C NMR). 1H and 13C NMR spectra were measured in CDCl3
unless otherwise stated. 1H chemical shifts are reported in ppm using tetramethylsilane
(TMS) as internal standard. The following abbreviations are used: m (multiplet), s (singlet),
bs (broad singlet), d (doublet), t (triplet), dd (doublet of doublet), td (triplet of doublet),
q (quadruplet), qui (quintuplet), sex (sextuplet). 13C NMR chemical shifts are reported
in ppm from the central peak of deuterochloroform (77.1). IR spectra were measured on
a Bruker Vector 22 spectrophotometer [neat, ATR] and are reported in wave numbers
(cm−1). High resolution mass spectra (HRMS) were recorded by direct infusion in a mass
spectrometer LCT Premier/XE (Waters).

General Methods: All glassware was oven-dried at 140 ◦C and all reactions were con-
ducted under dry argon atmosphere. The solvents cyclohexane, ethyl acetate and MeOH for
chromatography were purchased to Aldrich and were used as received. The reactions were
monitored by TLC run in cyclohexane/EtOAc mixtures. The plates were visualized by UV
light (254 and 365 nm) and immersed into a solution of phosphomolybdic acid in ethanol,
and carefully heated to improve selectivity. Preparative TLC was performed on 2.0-mm
thick Merck pre-coated silica gel PLC plates. Merck silica gel 60 (230–400 mesh) was used
for column chromatography, employing cyclohexane/EtOAc polarity gradient techniques
under positive pressure. Melting points were recorded on a Büchi B-450 apparatus and are
uncorrected.

4.2. General Procedure for the Liebeskind–Srogl Coupling of 3-(6-Methylthiopurine)-2-quinolone
(3e) and Boronic Acids

In a reaction tube under argon atmosphere, quinolone 3e (1 equiv.), boronic acid
(2.0 equiv.), PdDppfCl2·CH2Cl2 (0.02 equiv.), and CuTC (2 equiv.) were mixed in dry
dioxane (10 mL/mmol). The tube was sealed and placed into a pre-heated oil bath at
80–90 ◦C until reaction completeness (4–8 h) was ascertained by TLC. The volatiles were
removed in the rotavapor, and the crude material was purified by column chromatography
or preparative TLC.

3-[9-benzyl-6-(4-methoxyphenyl)-9H-purin-8-yl]-1-methylquinolin-2(1H)-one (4a):
27 mg, 0.056 mmol, Yield 61%. Colorless oil. Rf = 0.67 (C6H12/AcOEt 50%). IR (ATR-
diamond, ν): 2963, 1649, 1642, 1598, 1578, 1512, 1453, 1413, 1322, 1292, 1251, 1174, 1103,
1028, 1013, 873, 846, 804, 750, 734, 699 cm−1. 1H NMR δ: 3.84 (s, 3H, NCH3), 3.90 (s, 3H,
ArOCH3), 5.74 (s, 2H, NCH2Ph), 7.00–7.12 (m, 7H, Bn, ArOCH3), 7.28 (dt, J = 7.9, 0.7 Hz,
1H), 7.42 (d, J = 8.7 Hz, 1H), 7.57 (dd, J = 7.9, 1.5 Hz, 1H), 7.66 (dd, J = 8.3, 0.7 Hz, 1H),
8.05 (s, 1H, H-4), 8.87 (d, J = 9.0 Hz, 2H, ArOCH3), 9.01 (s, 1H, H-4′). 13C NMR δ: 30.1,
47.1, 55.4, 113.5, 114.1, 114.3, 119.7, 122.8, 123.2, 127.4, 128.3, 128.5, 129.9, 130.3, 131.7, 132.4,
136.4, 140.6, 143.2, 151.9, 152.3, 153.8, 154.1, 160.1, 162.0. HRMS m/z calcd for C29H25N6O2:
489.2039 [M + H]+, found: 489.2030.

3-[9-benzyl-6-(3-methoxyphenyl)-9H-purin-8-yl]-1-methylquinolin-2(1H)-one (4b):
47 mg, 0.099 mmol, Yield 89%. Colorless oil. Rf = 0.29 (C6H12/AcOEt 50%). IR (ATR-
diamond, ν): 3250, 1646, 1461, 1323, 1218, 1161, 1071, 954, 791 cm−1. 1H NMR δ (d6-
acetone): 3.87 (s, 3H, NCH3), 3.91 (s, 3H, OCH3), 5.76 (s, 2H, NCH2Ph), 7.07–7.15 (m, 6H,
Bn, ArOCH3), 7.35 (dt, J = 7.9, 0.9 Hz, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.66 (d, J = 8.3 Hz,
1H), 7.77 (dt, J = 7.9, 1.5 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 8.29 (s, 1H), 8.64–8.67 (m, 2H,
ArOCH3), 9.01 (s, 1H, H-4′). 13C NMR δ (d6-acetone): 30.2, 47.6, 55.7, 115.7, 117.5, 120.5,
123.2, 123.5, 128.3, 128.4, 129.3, 130.3, 130.8, 133.3, 143.9, 153.7, 160.6, 160.8. HRMS m/z calcd
for C29H24N5O2: 474.1930 [M + H]+, found: 474.1937.

3-(9-benzyl-6-phenyl-9H-purin-8-yl)-1-methylquinolin-2(1H)-one (4c): 10 mg, 0.024
mmol, Yield 39%. Colorless oil. Rf = 0.52 (C6H12/AcOEt 50%). IR (ATR-diamond, ν): 3060,
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2931, 1641, 1586, 1466, 1331, 1298, 1166, 954, 768, 668 cm−1. 1H NMR δ: 3.84 (s, 3H, NCH3),
5.74 (s, 2H, NCH2Ph), 7.00–7.13 (m, 5H, Bn), 7.29 (t, J = 8.1 Hz, 1H), 7.43 (d, J = 8.7 Hz, 1H),
7.48–7.62 (m, 8H), 7.67 (dd, J = 8.7, 1.5 Hz, 2H), 8.05 (s, 1H, H-4), 8.25 (d, J = 6.8 Hz, 1H,
H-4”), 8.81 (dd, J = 8.3, 1.9 Hz, 2H, H-2”,6”), 9.08 (s, 1H, H-4′). 13C NMR δ: 30.1, 47.1, 114.3,
119.7, 122.9, 123.1, 127.4, 127.7, 127.8, 128.0, 128.5, 128.7, 129.9, 130.7, 130.9, 132.4, 132.7,
133.2, 133.5, 135.9, 136.4, 140.6, 143.3, 152.2, 152.5, 154.3, 154.4, 160.1. HRMS m/z calcd for
C28H21N5ONa: 466.1644 [M + Na]+, found: 466.1646.

3-[9-benzyl-6-(3,4,5-trimethoxyphenyl)-9H-purin-8-yl]-1-methylquinolin-2(1H)-one (4d):
24 mg, 0.053 mmol, Yield 85%. Colorless oil. Rf = 0.28 (C6H12/AcOEt 50%). IR (ATR-
diamond, ν): 2939, 2836, 1641, 1505, 1444, 1346, 1217, 11,241,072, 1002, 952, 858, 723,
697 cm−1. 1H NMR δ: 3.84 (s, 3H, NCH3), 3.93 (s, 3H, OCH3), 3.938 (s, 6H, OCH3), 5.72 (s,
2H, NCH2Ph), 6.96–7.02 (m, 2H, Bn), 7.07–7.11 (m, 3H, Bn), 7.28 (t, J = 7.4 Hz, 1H), 7.44
(d, J = 8.5 Hz, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.68 (dt, J = 7.4, 1.5 Hz, 1H) 8.03 (s, 1H), 8.25 (s,
2H, ArOCH3), 9.03 (s, 1H, H-4′). 13C NMR δ: 30.1, 47.1, 56.3, 61.0, 107.3, 114.4, 119.7, 122.9,
123.4, 127.4, 127.7, 128.5, 129.9, 130.8, 131.3, 132.4, 136.4, 140.6, 143.0, 152.0, 153.3, 153.7,
154.3, 160.1. HRMS m/z calcd for C31H28N5O4: 534.2141 [M + H]+, found: 534.2148.

3-[9-benzyl-6-(3,5-dimethylphenyl)-9H-purin-8-yl]-1-methylquinolin-2(1H)-one (4e):
19 mg, 0.054 mmol, Yield 76%. Colorless oil. Rf = 0.61 (C6H12/AcOEt 50%). IR (ATR-
diamond, ν): 3037, 2910, 1646, 1582, 1447, 1322, 1216, 1117, 1073, 955, 863, 725 cm−1. 1H
NMR δ: 3.83 (s, 3H, NCH3), 5.73 (s, 2H, NCH2Ph), 6.98–7.01 (m, 2H, Bn), 7.07–7.12 (m, 3H,
Bn), 7.14 (s, 1H, ArCH3), 7.28 (t, J = 7.4 Hz, 1H), 7.43 (d, J = 8.5 Hz, 1H), 7.59 (d, J = 7.7 Hz,
1H), 7.67 (t, J = 7.4 Hz, 1H) 8.07 (s, 1H), 8.42 (s, 2H, ArCH3), 9.06 (s, 1H, H-4′). 13C NMR
δ: 21.5, 30.1, 47.1, 114.3, 119.7, 122.8, 123.2, 127.4, 127.6, 127.7, 128.5, 130.0, 130.9, 132.4,
132.7, 135.7, 136.4, 138.2, 140.6, 143.3, 152.1, 152.4, 154.2, 154.8, 160.1. HRMS m/z calcd for
C30H26N5O: 472.2137 [M + H]+, found: 472.2139.

3-[9-benzyl-6-(naphthalen-2-yl)-9H-purin-8-yl]-1-methylquinolin-2(1H)-one (4f):
21 mg, 0.059 mmol, Yield 85%. Colorless oil. Rf = 0.61 (C6H12/AcOEt 50%). IR (ATR-
diamond, ν): 3067, 1642, 1570, 1446, 1320, 1276, 1168, 920, 847, 754, 696 cm−1. 1H NMR δ:
3.85 (s, 3H, NCH3), 5.76 (s, 2H, NCH2Ph), 7.02–7.12 (m, 5H, Bn), 7.29 (t, J = 8.1 Hz, 1H), 7.43
(d, J = 8.5 Hz, 1H), 7.48–7.56 (m, 2H), 7.60 (d, J = 7.3 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.88
(d, J = 8.7 Hz, 1H), 7.99 (d, J = 8.7 Hz, 1H), 8.05 (d, J = 7.3 Hz, 1H), 8.11 (s, 1H, H-4), 8.97 (d,
J = 8.3 Hz, 1H, Naphthyl), 9.12 (s, 1H, H-4′), 9.46 (s, 1H, Naphthyl). 13C NMR δ: 30.1, 47.2,
114.3, 119.7, 122.9, 123.2, 126.2, 126.3, 127.3, 127.5, 127.70, 127.74, 128.2, 128.5, 123.0, 130.8,
131.2, 132.4, 133.3, 133.4, 133.6, 134.6, 136.4, 140.6, 143.4, 152.3, 152.5, 154.1, 154.4, 160.1.
HRMS m/z calcd for C32H24N5O: 494.1981 [M + H]+, found: 494.1976.

3-[9-benzyl-6-(4-chlorophenyl)-9H-purin-8-yl]-1-methylquinolin-2(1H)-one (4g):
34 mg, 0.083 mmol, Yield 85%. Colorless solid, m.p.: 202–203 ◦C (CH2Cl2/MeOH).
Rf = 0.65 (C6H12/AcOEt 50%). IR (ATR-diamond, ν): 3044, 2928, 1641, 1582, 1492, 1381,
1298, 1177, 1089, 953, 803, 736, 720 cm−1. 1H NMR δ: 3.85 (s, 3H, NCH3), 5.73 (s, 2H,
NCH2Ph), 6.99–7.03 (m, 2H, Bn), 7.07–7.12 (m, 3H, Bn), 7.30 (dt, J = 7.9, 0.7 Hz, 1H), 7.44 (d,
J = 8.5 Hz, 1H), 7.51 (d, J = 8.5 Hz, 2H, ArCl), 7.69 (dd, J = 8.7, 1.7 Hz, 1H), 8.04 (s, 1H), 8.85
(d, J = 8.5 Hz, 2H, ArCl), 9.06 (s, 1H, H-4′). 13C NMR δ: 30.1, 47.2, 114.3, 119.7, 122.9, 123.0,
127.5, 127.8, 128.9, 130.0, 130.8, 131.2, 132.5, 134.4, 136.3, 137.0, 140.6, 143.3, 152.4, 152.9,
154.4, 160.0. HRMS m/z calcd for C28H21N5OCl: 478.1435 [M + H]+, found: 478.1440.

3-[9-benzyl-6-(4-fluorophenyl)-9H-purin-8-yl]-1-methylquinolin-2(1H)-one (4h):
22 mg, 0.047 mmol, Yield 56%. Colorless oil. Rf = 0.57 (C6H12/AcOEt 50%). IR (ATR-
diamond, ν): 3058, 2958, 1642, 1569, 1463, 1320, 1297, 1159, 1070, 952, 847, 724, 698 cm−1.
1H NMR δ: 3.63 (s, 3H, NCH3), 5.65 (s, 2H, NCH2Ph), 6.91–6.94 (m, 2H, Bn), 6.99–7.05 (m,
3H, Bn), 7.14 (t, J = 8.9 Hz, 2H, ArF), 7.22 (t, J = 7.9 Hz, 1H), 7.36 (d, J = 8.5 Hz, 1H), 7.51 (dd,
J = 7.9, 1.3 Hz, 1H), 7.61 (dt, J = 8.5, 1.3 Hz, 1H), 7.97 (s, 1H, H-4), 8.84 (dd, J = 8.9, 5.6 Hz,
1H, ArF), 8.97 (s, 1H, H-4′). 13C NMR δ: 30.1, 47.1, 67.1 114.3, 115.7 (d, 2JC-F = 21.6 Hz),
119.7, 122.9, 123.1, 127.5, 127.8, 128.5, 130.0, 132.1 (d, 3JC-F = 8.3 Hz), 136.3, 140.6, 143.3, 152.3,
152.5, 153.0, 154.3, 160.1, 164.5 (d, 1JC-F = 249.8 Hz). HRMS m/z calcd for C28H20N5OFNa:
484.1550 [M + Na]+, found: 484.1552.
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4.3. Procedure for the Liebeskind–Srogl Coupling of 3-(6-Methylthiopurine)-2-quinolone (3e)
and Anilines

In a reaction tube equipped with a stirring bar under argon atmosphere, quinolone
3e (1 equiv.), the appropriate aniline (2.0 equiv.), PdDppfCl2·CH2Cl2 (0.1 equiv.), Ph3P
(0.2 equiv.), Cs2CO3 (2.0 equiv.), and CuTC (2 equiv.) were admixed in dry dioxane
(20 mL/mmol). The tube was sealed and poured into a pre-heated oil bath at 130 ◦C until
consumption of quinolone 1, monitored by TLC (15–18 h). The volatiles were removed
in the rotavapor, and the crude material was suspended with AcOEt, filtered through a
short pad of cotton, concentrated under vacuum, and the remaining solid was purified by
preparative TLC (2 × C6H12/AcOEt 50%).

3-{9-benzyl-6-[(4-methoxyphenyl)amino]-9H-purin-8-yl}-1-methylquinolin-2(1H)-one
(5a): 20 mg, 0.039 mmol, Yield 67%. Yellowish oil. Rf = 0.36 (2 × C6H12/AcOEt 50%). IR
(ATR-diamond, ν): 3283, 3038, 2928, 2847, 1641, 1588, 1573, 1461, 1380, 1241, 1180, 1087,
953, 829, 755, 697 cm−1. 1H NMR δ: 3.74 (s, 3H, NCH3), 3.75 (s, 3H, OCH3), 5.54 (s, 2H,
NCH2Ph), 6.92 (d, J = 8.9 Hz, 2H, Ar), 6.99–7.02 (m, 2H, Bn), 7.09–7.13 (m, 3H, Bn), 7.26 (t,
J = 8.2 Hz, 1H, H-6), 7.41 (d, J = 8.5 Hz, 1H, H-8), 7.48 (d, J = 7.7 Hz, 1H, H-5), 7.62–7.68
(m, 3H, H-7, ArOCH3), 7.71 (sb, 1H, NH) 7.86 (s, 1H, H-4), 8.55 (s, 1H, H-4′). 13C NMR δ:
30.0, 47.1, 55.5, 114.3, 119.6, 119.9, 122.5, 122.8, 123.0, 127.4, 127.9, 128.5, 129.8, 131.7, 132.2,
136.6, 140.5, 142.4, 147.9, 151.2, 152.2, 153.2, 156.1, 160.1. HRMS m/z calcd for C29H25N6O2:
489.2039 [M + H]+, found: 489.2030.

3-{9-benzyl-6-[(3,4,5-trimethoxyphenyl)amino]-9H-purin-8-yl}-1-methylquinolin-2(1H)-
one (5b): 14 mg, 0.025 mmol, Yield 51%. Yellowish oil. Rf = 0.18 (3 × C6H12/AcOEt 50%).
IR (ATR-diamond, ν): 3296, 3039, 2933, 2834, 1642, 1588, 1463, 1323, 1126, 1088, 954, 697
cm−1. 1H NMR δ: 3.82 (s, 3H, NCH3), 3.83 (s, 3H, OCH3), 3.87 (s, 6H, OCH3), 5.63 (s, 2H,
N-CH2Ph), 6.99–7.02 (m, 2H, Bn), 7.09–7.14 (m, 3H, Bn), 7.16 [s, 2H, Ar(OCH3)3], 7.27 (t,
J = 7.4 Hz, 1H, H-6), 7.42 (d, J = 8.5 Hz, 1H, H-8), 7.49 (d,
J = 7.2 Hz, 1H, H-5), 7.66 (t, J = 7.9 Hz, 1H, H-7), 7.87 (sb, 1H, NH), 8.31 (s, 1H, H-4),
8.59 (s, 1H, H-10). 13C NMR δ: 30.1, 47.1, 56.1, 61.0, 98.0, 114.3, 119.6, 119.8, 122.8, 122.8,
127.4, 127.7, 128.5, 129.8, 132.3, 135.1, 136.5, 140.5, 142.5, 148.2, 151.9, 153.1, 153.3, 160.2.
HRMS m/z calcd for C31H29N6O4: 549.2250 [M + H]+, found: 549.2250.

4.4. Materials and Methods for Cell Culture and Western Blot Analysis

MDA-MB-231 cells were grown in L15 supplemented with 15% serum, 2 mM glu-
tamine, and 22 mM sodium bicarbonate in the presence of Penicillin/Streptomycin antibi-
otic mixture. PC-3 cells were cultured in RPMI 1640 supplemented with 10% serum and
2 mM glutamine in the presence of Penicillin/Streptomycin antibiotic mixture. MRC-5
cells were cultured in EMEM supplemented with 10% serum and 2 mM glutamine in the
presence of Penicillin/Streptomycin antibiotic mixture (Reagents were purchased from
Sigma Aldrich, Saint-Quentin-Fallavier, France).

Cells were treated for 72 h with 10, 15, and 25 µM of the selected substances. Control
cells were treated with the equivalent in DMSO.

Cell survival was assessed using the CellTiter Aqueous One Proliferation assay
(Promega, Charbonnières-les-Bains, France) whereby 2500 or 5000 cells per well were
seeded in 96-well plates in 100 µL. At the end of the treatment, 20 µL of reagent was added,
and absorbance readings were taken at 492 nm on a 96-well plate reader after 3 h of contact
(on average).

For protein expression analysis, cells were seeded at a rate of 0.75 × 106 cells on a
25 cm2 surface. At the end of the treatment the cells were washed and lysed with RIPA
buffer (Sigma Aldrich, Saint-Quentin-Fallavier, France city, country) to which protease
inhibitors (Sigma Aldrich, Saint-Quentin-Fallavier, France SIGMA) were added. After
30 min of lysis on ice, the samples were centrifuged (3500 rpm, 10 min) and stored at
−20 ◦C. Total protein concentration was obtained using the Bio-rad Protein Assay reagent
(Bio-Rad Laboratories, Marnes-la-Coquette, France city, country). Hence, 30 µg of protein
(denatured in the presence of Laemmli buffer, sample buffer from Bio-Rad) was plated on a
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4–15% pre-cast acrylamide gel (Bio-Rad, Marnes-la-Coquette, France) and subjected to SDS-
PAGE (150 V, 1 h) and PVDF membrane transfer (100 V, 45 min). Immunorevelation was
performed as follows: 1 h saturation of the membrane with TBS-Tween (0.1%)–5% skim milk
followed by overnight incubation in primary antibody solution (antibodies were from Santa
Cruz Biotechnologies, Clinisciences, Nanterre, France or from Sigma Aldrich, Saint-Quentin-
Fallavier, France)(See Table 3). After 1 h of washing in 0.1% TBS-Tween, the membranes
were contacted with the second horseradish peroxidase-coupled antibody. Detection of the
chemiluminescence signal (SuperSignal Pierce reagent, Fisher Scientific, Illkirch, France)
was performed using the ChemiBis gel Imager (DNR Bio-Imaging Systems, Israel).

Table 3. Informations concerning antibodies used during this study.

Primary Antibody Dilution Secondary Antibody
(from Santa-Cruz) Dilution

Anti-Hsp90 α/β (H-114) (Santa-Cruz) 1/500 Anti-rabbit 1/10,000
Anti-Hsp70 (Santa-Cruz) 1/500 Anti-mouse 1/3000

Anti-CDK-4 (C-22) (Santa-Cruz) 1/500 Anti-rabbit 1/10,000
Anti-GAPDH (Sigma Aldrich) 1/5000 Anti-rabbit 1/10,000

Supplementary Materials: The following are available online, 1H and 13C NMR spectra for com-
pounds 4a–h and 5a, 5b.
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