39 research outputs found

    Mimicking tricks from nature with sensory organic-inorganic hybrid materials

    Full text link
    Design strategies for (bio)chemical systems that are inspired by nature's accomplishments in system design and operation on various levels of complexity are increasingly gaining in importance. Within the broad field of biomimetic chemistry, this article highlights various attempts toward improved and sophisticated sensory materials that rely on the combination of supramolecular (bio)chemical recognition principles and nanoscopic solid structures. Examples range from more established concepts such as hybrid sensing ensembles with improved sensitivity and selectivity or for target analytes for which selectivity is hard to achieve by conventional methods, which were often inspired by protein binding pockets or ion channels in membranes, to very recent approaches relying on target-gated amplified signalling with functionalised mesoporous inorganic supports and the integration of native biological sensory species such as transmembrane proteins in spherically supported bilayer membranes. Besides obvious mimicry of recognition-based processes, selected approaches toward chemical transduction junctions utilizing artificially organized synapses, hybrid ensembles for improved antibody generation and uniquely colour changing systems are discussed. All of these strategies open up exciting new prospects for the development of sensing concepts and sensory devices at the interface of nanotechnology, smart materials and supramolecular (bio)chemistry. © 2011 The Royal Society of Chemistry.Martínez Mañez, R.; Sancenón Galarza, F.; Biyikal, M.; Hecht, M.; Rurack, K. (2011). Mimicking tricks from nature with sensory organic-inorganic hybrid materials. Journal of Materials Chemistry. 21(34):12588-12604. doi:10.1039/c1jm11210dS12588126042134Ma, M. (2007). Encoding Olfactory Signals via Multiple Chemosensory Systems. Critical Reviews in Biochemistry and Molecular Biology, 42(6), 463-480. doi:10.1080/10409230701693359Leinders-Zufall, T., Lane, A. P., Puche, A. C., Ma, W., Novotny, M. V., Shipley, M. T., & Zufall, F. (2000). Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature, 405(6788), 792-796. doi:10.1038/35015572Serezani, C. H., Ballinger, M. N., Aronoff, D. M., & Peters-Golden, M. (2008). Cyclic AMP. American Journal of Respiratory Cell and Molecular Biology, 39(2), 127-132. doi:10.1165/rcmb.2008-0091trShimada, T. (2006). Xenobiotic-Metabolizing Enzymes Involved in Activation and Detoxification of Carcinogenic Polycyclic Aromatic Hydrocarbons. Drug Metabolism and Pharmacokinetics, 21(4), 257-276. doi:10.2133/dmpk.21.257Duncan, M. C., Ho, D. G., Huang, J., Jung, M. E., & Payne, G. S. (2007). Composite synthetic lethal identification of membrane traffic inhibitors. Proceedings of the National Academy of Sciences, 104(15), 6235-6240. doi:10.1073/pnas.0607773104Helmreich, E. J. M. (2002). Environmental influences on signal transduction through membranes: a retrospective mini-review. Biophysical Chemistry, 100(1-3), 519-534. doi:10.1016/s0301-4622(02)00303-4Anslyn, E. V. (2007). Supramolecular Analytical Chemistry. The Journal of Organic Chemistry, 72(3), 687-699. doi:10.1021/jo0617971Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2Koshland, D. E. (1958). Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences, 44(2), 98-104. doi:10.1073/pnas.44.2.98Hammes, G. G. (2002). Multiple Conformational Changes in Enzyme Catalysis†. Biochemistry, 41(26), 8221-8228. doi:10.1021/bi0260839Lin, V. S.-Y., Lai, C.-Y., Huang, J., Song, S.-A., & Xu, S. (2001). Molecular Recognition Inside of Multifunctionalized Mesoporous Silicas:  Toward Selective Fluorescence Detection of Dopamine and Glucosamine. Journal of the American Chemical Society, 123(46), 11510-11511. doi:10.1021/ja016223mRadu, D. R., Lai, C.-Y., Wiench, J. W., Pruski, M., & Lin, V. S.-Y. (2004). Gatekeeping Layer Effect:  A Poly(lactic acid)-coated Mesoporous Silica Nanosphere-Based Fluorescence Probe for Detection of Amino-Containing Neurotransmitters. Journal of the American Chemical Society, 126(6), 1640-1641. doi:10.1021/ja038222vDescalzo, A. B., Rurack, K., Weisshoff, H., Martínez-Máñez, R., Marcos, M. D., Amorós, P., … Soto, J. (2005). Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. Journal of the American Chemical Society, 127(1), 184-200. doi:10.1021/ja045683nComes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., … Beltrán, D. (2004). Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica. Advanced Materials, 16(20), 1783-1786. doi:10.1002/adma.200400143(s. f.). doi:10.1021/ol052298García-Acosta, B., Comes, M., Bricks, J. L., Kudinova, M. A., Kurdyukov, V. V., Tolmachev, A. I., … Amorós, P. (2006). Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chem. Commun., (21), 2239-2241. doi:10.1039/b602497aComes, M., Marcos, M. D., Martínez-Máñez, R., Millán, M. C., Ros-Lis, J. V., Sancenón, F., … Villaescusa, L. A. (2006). Anchoring Dyes into Multidimensional Large-Pore Zeolites: A Prospective Use as Chromogenic Sensing Materials. Chemistry - A European Journal, 12(8), 2162-2170. doi:10.1002/chem.200500932Comes, M., Rodríguez-López, G., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Beltrán, D. (2005). Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie International Edition, 44(19), 2918-2922. doi:10.1002/anie.200461511Comes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., & Amorós, P. (2008). Hybrid materials with nanoscopic anion-binding pockets for the colorimetric sensing of phosphate in water using displacement assays. Chemical Communications, (31), 3639. doi:10.1039/b804396eComes, M., Aznar, E., Moragues, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2009). Mesoporous Hybrid Materials Containing Nanoscopic «Binding Pockets» for Colorimetric Anion Signaling in Water by using Displacement Assays. Chemistry - A European Journal, 15(36), 9024-9033. doi:10.1002/chem.200900890Vašák, M. (2005). Advances in metallothionein structure and functions. Journal of Trace Elements in Medicine and Biology, 19(1), 13-17. doi:10.1016/j.jtemb.2005.03.003Slocik, J. M., & Wright, D. W. (2003). Biomimetic Mineralization of Noble Metal Nanoclusters. Biomacromolecules, 4(5), 1135-1141. doi:10.1021/bm034003qLee, J.-W., & Helmann, J. D. (2007). Functional specialization within the Fur family of metalloregulators. BioMetals, 20(3-4), 485-499. doi:10.1007/s10534-006-9070-7Lee, M. H., Lee, S. J., Jung, J. H., Lim, H., & Kim, J. S. (2007). Luminophore-immobilized mesoporous silica for selective Hg2+ sensing. Tetrahedron, 63(48), 12087-12092. doi:10.1016/j.tet.2007.08.113Song, C., Zhang, X., Jia, C., Zhou, P., Quan, X., & Duan, C. (2010). Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in Aqueous Media. Talanta, 81(1-2), 643-649. doi:10.1016/j.talanta.2009.12.047Métivier, R., Leray, I., Lebeau, B., & Valeur, B. (2005). A mesoporous silica functionalized by a covalently bound calixarene-based fluoroionophore for selective optical sensing of mercury(ii) in water. Journal of Materials Chemistry, 15(27-28), 2965. doi:10.1039/b501897hLee, S. J., Lee, J.-E., Seo, J., Jeong, I. Y., Lee, S. S., & Jung, J. H. (2007). Optical Sensor Based on Nanomaterial for the Selective Detection of Toxic Metal Ions. Advanced Functional Materials, 17(17), 3441-3446. doi:10.1002/adfm.200601202Palomares, E., Vilar, R., & Durrant, J. R. (2004). Heterogeneous colorimetric sensor for mercuric saltsElectronic supplementary information (ESI) available: Materials and methods. See http://www.rsc.org/suppdata/cc/b3/b314138a/. Chemical Communications, (4), 362. doi:10.1039/b314138aWang, Y., Li, B., Zhang, L., Liu, L., Zuo, Q., & Li, P. (2010). A highly selective regenerable optical sensor for detection of mercury(ii) ion in water using organic–inorganic hybrid nanomaterials containing pyrene. New Journal of Chemistry, 34(9), 1946. doi:10.1039/c0nj00039fLi, L.-L., Sun, H., Fang, C.-J., Xu, J., Jin, J.-Y., & Yan, C.-H. (2007). Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes (H+ and Cu2+) in water. Journal of Materials Chemistry, 17(42), 4492. doi:10.1039/b708857dZhang, H., Zhang, P., Ye, K., Sun, Y., Jiang, S., Wang, Y., & Pang, W. (2006). Mesoporous material grafted with luminescent molecules for the design of selective metal ion chemosensor. Journal of Luminescence, 117(1), 68-74. doi:10.1016/j.jlumin.2005.04.009Gao, L., Wang, J. Q., Huang, L., Fan, X. X., Zhu, J. H., Wang, Y., & Zou, Z. G. (2007). Novel Inorganic−Organic Hybrid Fluorescence Chemosensor Derived from SBA-15 for Copper Cation. Inorganic Chemistry, 46(24), 10287-10293. doi:10.1021/ic7008732Wang, J.-Q., Huang, L., Xue, M., Wang, Y., Gao, L., Zhu, J. H., & Zou, Z. (2008). Architecture of a Hybrid Mesoporous Chemosensor for Fe3+ by Covalent Coupling Bis-Schiff Base PMBA onto the CPTES-Functionalized SBA-15. The Journal of Physical Chemistry C, 112(13), 5014-5022. doi:10.1021/jp7099948Gao, L., Wang, Y., Wang, J., Huang, L., Shi, L., Fan, X., … Li, Z. (2006). A Novel ZnII-Sensitive Fluorescent Chemosensor Assembled within Aminopropyl-Functionalized Mesoporous SBA-15. Inorganic Chemistry, 45(17), 6844-6850. doi:10.1021/ic0516562Balaji, T., Sasidharan, M., & Matsunaga, H. (2005). Naked eye detection of cadmium using inorganic–organic hybrid mesoporous material. Analytical and Bioanalytical Chemistry, 384(2), 488-494. doi:10.1007/s00216-005-0187-2Balaji, T., El-Safty, S. A., Matsunaga, H., Hanaoka, T., & Mizukami, F. (2006). Optical Sensors Based on Nanostructured Cage Materials for the Detection of Toxic Metal Ions. Angewandte Chemie International Edition, 45(43), 7202-7208. doi:10.1002/anie.200602453El-Safty, S. A., Ismail, A. A., Matsunaga, H., & Mizukami, F. (2007). Optical Nanosensor Design with Uniform Pore Geometry and Large Particle Morphology. Chemistry - A European Journal, 13(33), 9245-9255. doi:10.1002/chem.200700499El-Safty, S. A., Ismail, A. A., Matsunaga, H., Hanaoka, T., & Mizukami, F. (2008). Optical Nanoscale Pool-on-Surface Design for Control Sensing Recognition of Multiple Cations. Advanced Functional Materials, 18(10), 1485-1500. doi:10.1002/adfm.200701059Ros-Lis, J. V., Casasús, R., Comes, M., Coll, C., Marcos, M. D., Martínez-Máñez, R., … Rurack, K. (2008). A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+Detection and Adsorption. Chemistry - A European Journal, 14(27), 8267-8278. doi:10.1002/chem.200800632Lee, S. J., Bae, D. R., Han, W. S., Lee, S. S., & Jung, J. H. (2008). Different Morphological Organic–Inorganic Hybrid Nanomaterials as Fluorescent Chemosensors and Adsorbents for CuII Ions. European Journal of Inorganic Chemistry, 2008(10), 1559-1564. doi:10.1002/ejic.200701073Lee, H. Y., Bae, D. R., Park, J. C., Song, H., Han, W. S., & Jung, J. H. (2009). A Selective Fluoroionophore Based on BODIPY-functionalized Magnetic Silica Nanoparticles: Removal of Pb2+ from Human Blood. Angewandte Chemie International Edition, 48(7), 1239-1243. doi:10.1002/anie.200804714Haupt, K., & Mosbach, K. (2000). Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chemical Reviews, 100(7), 2495-2504. doi:10.1021/cr990099wWulff, G. (2002). Enzyme-like Catalysis by Molecularly Imprinted Polymers. Chemical Reviews, 102(1), 1-28. doi:10.1021/cr980039aSellergren, B. (1997). Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials. TrAC Trends in Analytical Chemistry, 16(6), 310-320. doi:10.1016/s0165-9936(97)00027-7D�az-Garc�a, M. E., & La�n�o, R. B. (2004). Molecular Imprinting in Sol-Gel Materials: Recent Developments and Applications. Microchimica Acta, 149(1-2), 19-36. doi:10.1007/s00604-004-0274-7Bossi, A., Bonini, F., Turner, A. P. F., & Piletsky, S. A. (2007). Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosensors and Bioelectronics, 22(6), 1131-1137. doi:10.1016/j.bios.2006.06.023Nicholls, I. A., & Rosengren, J. P. (2001). Bioseparation, 10(6), 301-305. doi:10.1023/a:1021541631063Chang, Y.-S., Ko, T.-H., Hsu, T.-J., & Syu, M.-J. (2009). Synthesis of an Imprinted Hybrid Organic−Inorganic Polymeric Sol−Gel Matrix Toward the Specific Binding and Isotherm Kinetics Investigation of Creatinine. Analytical Chemistry, 81(6), 2098-2105. doi:10.1021/ac802168wBass, J. D., & Katz, A. (2003). Thermolytic Synthesis of Imprinted Amines in Bulk Silica. Chemistry of Materials, 15(14), 2757-2763. doi:10.1021/cm021822tCarlson, C. A., Lloyd, J. A., Dean, S. L., Walker, N. R., & Edmiston, P. L. (2006). Sensor for Fluorene Based on the Incorporation of an Environmentally Sensitive Fluorophore Proximal to a Molecularly Imprinted Binding Site. Analytical Chemistry, 78(11), 3537-3542. doi:10.1021/ac051375bShughart, E. L., Ahsan, K., Detty, M. R., & Bright, F. V. (2006). Site Selectively Templated and Tagged Xerogels for Chemical Sensors. Analytical Chemistry, 78(9), 3165-3170. doi:10.1021/ac060113mTrammell, S. A., Zeinali, M., Melde, B. J., Charles, P. T., Velez, F. L., Dinderman, M. A., … Markowitz, M. A. (2008). Nanoporous Organosilicas as Preconcentration Materials for the Electrochemical Detection of Trinitrotoluene. Analytical Chemistry, 80(12), 4627-4633. doi:10.1021/ac702263tMakote, R., & Collinson, M. M. (1998). Template Recognition in Inorganic−Organic Hybrid Films Prepared by the Sol−Gel Process. Chemistry of Materials, 10(9), 2440-2445. doi:10.1021/cm9801136Makote, R., & Collinson, M. M. (1998). Dopamine recognition in templated silicate films. Chemical Communications, (3), 425-426. doi:10.1039/a705536fFireman-Shoresh, S., Avnir, D., & Marx, S. (2003). General Method for Chiral Imprinting of Sol−Gel Thin Films Exhibiting Enantioselectivity. Chemistry of Materials, 15(19), 3607-3613. doi:10.1021/cm0340734Marx, S., Zaltsman, A., Turyan, I., & Mandler, D. (2004). Parathion Sensor Based on Molecularly Imprinted Sol−Gel Films. Analytical Chemistry, 76(1), 120-126. doi:10.1021/ac034531sTurner, N. W., Jeans, C. W., Brain, K. R., Allender, C. J., Hlady, V., & Britt, D. W. (2006). From 3D to 2D: A Review of the Molecular Imprinting of Proteins. Biotechnology Progress, 22(6), 1474-1489. doi:10.1002/bp060122gXie, C., Liu, B., Wang, Z., Gao, D., Guan, G., & Zhang, Z. (2008). Molecular Imprinting at Walls of Silica Nanotubes for TNT Recognition. Analytical Chemistry, 80(2), 437-443. doi:10.1021/ac701767hTan, J., Wang, H.-F., & Yan, X.-P. (2009). Discrimination of Saccharides with a Fluorescent Molecular Imprinting Sensor Array Based on Phenylboronic Acid Functionalized Mesoporous Silica. Analytical Chemistry, 81(13), 5273-5280. doi:10.1021/ac900484xWang, H.-F., He, Y., Ji, T.-R., & Yan, X.-P. (2009). Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water. Analytical Chemistry, 81(4), 1615-1621. doi:10.1021/ac802375aJentsch, T. J., Stein, V., Weinreich, F., & Zdebik, A. A. (2002). Molecular Structure and Physiological Function of Chloride Channels. Physiological Reviews, 82(2), 503-568. doi:10.1152/physrev.00029.2001Morbach, S., & Krämer, R. (2002). Body Shaping under Water Stress: Osmosensing and Osmoregulation of Solute Transport in Bacteria. ChemBioChem, 3(5), 384. doi:10.1002/1439-7633(20020503)3:53.0.co;2-hWemmie, J. A., Price, M. P., & Welsh, M. J. (2006). Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends in Neurosciences, 29(10), 578-586. doi:10.1016/j.tins.2006.06.014Bayley, H., & Martin, C. R. (2000). Resistive-Pulse SensingFrom Microbes to Molecules. Chemical Reviews, 100(7), 2575-2594. doi:10.1021/cr980099gJung, Y., Bayley, H., & Movileanu, L. (2006). Temperature-Responsive Protein Pores. Journal of the American Chemical Society, 128(47), 15332-15340. doi:10.1021/ja065827tJenkins, A. T. A., Boden, N., Bushby, R. J., Evans, S. D., Knowles, P. F., Miles, R. E., … Vancso, G. J. (1999). Microcontact Printing of Lipophilic Self-Assembled Monolayers for the Attachment of Biomimetic Lipid Bilayers to Surfaces. Journal of the American Chemical Society, 121(22), 5274-5280. doi:10.1021/ja983968sRose, L., & Jenkins, A. T. A. (2007). The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes. Bioelectrochemistry, 70(2), 387-393. doi:10.1016/j.bioelechem.2006.05.009Tsukube, H., Takagi, K., Higashiyama, T., Iwachido, T., & Hayama, N. (1994). Biomimetic Membrane Transport: Interesting Ionophore Functions of Naturally Occurring Polyether Antibiotics toward Unusual Metal Cations and Amino Acid Ester Salts. Inorganic Chemistry, 33(13), 2984-2987. doi:10.1021/ic00091a043Murillo, O., Suzuki, I., Abel, E., Murray, C. L., Meadows, E. S., Jin, T., & Gokel, G. W. (1997). Synthetic Transmembrane Channels:  Functional Characterization Using Solubility Calculations, Transport Studies, and Substituent Effects. Journal of the American Chemical Society, 119(24), 5540-5549. doi:10.1021/ja962694aSakai, N., Brennan, K. C., Weiss, L. A., & Matile, S. (1997). Toward Biomimetic Ion Channels Formed by Rigid-Rod Molecules:  Length-Dependent Ion-Transport Activity of Substituted Oligo(p-Phenylene)s. Journal of the American Chemical Society, 119(37), 8726-8727. doi:10.1021/ja971513hRoks, M. F. M., & Nolte, R. J. M. (1992). Biomimetic macromolecular chemistry: design and synthesis of an artificial ion channel based on a polymer containing cofacially stacked crown ether rings. Incorporation in dihexadecyl phosphate vesicles and study of cobalt ion transport. Macromolecules, 25(20), 5398-5407. doi:10.1021/ma00046a042Finn, J. T., Grunwald, M. E., & Yau, K.-W. (1996). Cyclic Nucleotide-Gated Ion Channels: An Extended Family With Diverse Functions. Annual Review of Physiology, 58(1), 395-426. doi:10.1146/annurev.ph.58.030196.002143Levitan, I. B. (2006). Signaling protein complexes associated with neuronal ion channels. Nature Neuroscience, 9(3), 305-310. doi:10.1038/nn1647Goldenberg, L. M., Bryce, M. R., & Petty, M. C. (1999). Chemosensor devices: voltammetric molecular recognition at solid interfaces. Journal of Materials Chemistry, 9(9), 1957-1974. doi:10.1039/a901825eBühlmann, P., Aoki, H., Xiao, K. P., Amemiya, S., Tohda, K., & Umezawa, Y. (1998). Chemical Sensing with Chemically Modified Electrodes that Mimic Gating at Biomembranes Incorporating Ion-Channel Receptors. Electroanalysis, 10(17), 1149-1158. doi:10.1002/(sici)1521-4109(199811)10:173.0.co;2-nSugawara, M., Hirano, A., Bühlmann, P., & Umezawa, Y. (2002). Design and Application of Ion-Channel Sensors Based on Biological and Artificial Receptors. Bulletin of the Chemical Society of Japan, 75(2), 187-201. doi:10.1246/bcsj.75.187Gadzekpo, V. P. Y., Xiao, K. P., Aoki, H., Bühlmann, P., & Umezawa, Y. (1999). Voltammetric Detection of the Polycation Protamine by the Use of Electrodes Modified with Self-Assembled Monolayers of Thioctic Acid. Analytical Chemistry, 71(22), 5109-5115. doi:10.1021/ac990580mGadzekpo, V. P. Y., Bühlmann, P., Xiao, K. P., Aoki, H., & Umezawa, Y. (2000). Development of an ion-channel sensor for heparin detection. Analytica Chimica Acta, 411(1-2), 163-173. doi:10.1016/s0003-2670(00)00740-6Bandyopadhyay, K., Liu, H., Liu, S.-G., & Echegoyen, L. (2000). Self-assembled monolayers of bis-thioctic ester derivatives of oligoethyleneglycols: remarkable selectivity for K+/Na+ recognition. Chemical Communications, (2), 141-142. doi:10.1039/a905839gFlink, S., Schönherr, H., Vancso, G. J., Geurts, F. A. J., van Leerdam, K. G. C., van Veggel, F. C. J. M., & Reinhoudt, D. N. (2000). Cation sensing by patterned self-assembled monolayers on gold. Journal of the Chemical Society, Perkin Transactions 2, (10), 2141-2146. doi:10.1039/b002606iAOKI, H., UMEZAWA, Y., VERTOVA, A., & RONDININI, S. (2006). Ion-channel Sensors Based on ETH 1001 Ionophore Embedded in Charged-alkanethiol Self-assembled Monolayers on Gold Electrode Surfaces. Analytical Sciences, 22(12), 1581-1584. doi:10.2116/analsci.22.1581Aoki, H., Hasegawa, K., Tohda, K., & Umezawa, Y. (2003). Voltammetric detection of inorganic phosphate using ion-channel sensing with self-assembled monolayers of a hydrogen bond-forming receptor. Biosensors and Bioelectronics, 18(2-3), 261-267. doi:10.1016/s0956-5663(02)00177-xAoki, H., & Umezawa, Y. (2003). Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. The Analyst, 128(6), 681. doi:10.1039/b300465aKatayama, Y., Ohuchi, Y., Higashi, H., Kudo, Y., & Maeda, M. (2000). The Design of Cyclic AMP−Recognizing Oligopeptides and Evaluation of Its Capability for Cyclic AMP Recognition Using an Electrochemical System. Analytical Chemistry, 72(19), 4671-4674. doi:10.1021/ac990847hCliment, E., Casasús, R., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2008). Chromo-fluorogenic sensing of pyrophosphate in aqueous media using silica functionalised with binding and reactive units. Chemical Communications, (48), 6531. doi:10.1039/b813199fCliment, E., Calero, P., Marcos, M. D., Martínez-Máñez, R.

    Colorimetric detection of normetanephrine, a pheochromocytoma biomarker, using bifunctionalised gold nanoparticles

    Full text link
    [EN] A simple and effective colorimetric method for the detection of normetanephrine (NMN), an O-methylated metabolite of norepinephrine, using functionalised gold nanoparticles is described. This metabolite is an important biomarker in the diagnosis of adrenal tumours such as pheocromocytoma or paraganglioma. The colorimetric probe consists of spherical gold nanoparticles (AuNPs) functionalised with two different ligands, which specifically recognize different functional groups in normetanephrine. Thus, a benzaldehyde-terminated ligand was used for the recognition of the amino alcohol moiety in NMN, by forming the corresponding oxazolidine. On the other hand, N-acetyl-cysteine was chosen for the recognition of the phenolic hydroxyl group through the formation of hydrogen bonds. The selective double molecular recognition between the probe and the hydroxyl and the amino-alcohol moieties of normetanephrine led to interparticle-crosslinking aggregation resulting in a change in the color of the solution, from red to blue, which could be observed by naked eye. The probe was highly selective towards normetanephrine and no color changes were observed in the presence of other neurotransmitter metabolites such as homovanillic acid (HVA) (dopamine metabolite), 5-hydroxyindoleacetic acid (5-HIAA) (serotonin metabolite), or other biomolecules present in urine such as glucose (Glc), uric acid (U.A), and urea. Finally, the probe was evaluated in synthetic urine with constituents that mimic human urine, where a limit of detection of 0.5 mu M was achieved.Financial support from the Spanish Government (project MAT2015-64139-C4) and Generalitat Valenciana (Project PROMETEOII/2014/047 and AICO/2017/093) is gratefully acknowledged. T. Godoy-Reyes is grateful to Generalitat Valenciana for her Santiago Grisolia fellowship.Godoy-Reyes, TM.; Costero, AM.; Gaviña, P.; Martínez-Máñez, R.; Sancenón Galarza, F. (2019). Colorimetric detection of normetanephrine, a pheochromocytoma biomarker, using bifunctionalised gold nanoparticles. Analytica Chimica Acta. 1056:146-152. https://doi.org/10.1016/j.aca.2019.01.003S146152105

    A Colorimetric Probe for the Selective Detection of Norepinephrine Based on a Double Molecular Recognition with Functionalized Gold Nanoparticles

    Full text link
    [EN] A simple colorimetric probe for the selective and sensitive detection of neurotransmitter norepinephrine (NE), an important biomarker in the detection of tumors such as pheochromocytoma and paraganglioma, is described. The sensing strategy is based on the use of spherical gold nanoparticles functionalized with benzaldehyde and boronic acid-terminated moieties. A double molecular recognition involving on one hand the aromatic aldehyde and the aminoalcohol group of NE, and on the other hand the boronic acid and the catechol moiety of the neurotransmitter, results in analyte triggered aggregation of the gold nanoparticles, leading to a bathochromic shift of the SPR band in the UV-vis spectrum of the probe and a clear change in the color of the solution from red to blue. Probe P1 shows a remarkable selectivity toward NE versus other catecholamine neurotransmitters (dopamine and epinephrine) and selected biomolecules (S-HIAA, L-Tyr, glucose, uric acid, Lys and glutamic acid). Moreover, a linear response to NE in the 0-1 mu M concentration range was observed and a limit of detection of 0.07 mu M in aqueous media was determined by UV-vis spectroscopy. The sensitivity of the probe toward NE in synthetic urine was also evaluated. In this medium, a limit of detection of 0.09 mu M was obtained which falls within the range of clinical interestFinancial support from the Spanish Government (Projects MAT2015-64139-C4-1-R and MAT2015-64139-C4-4-R) and the Generalitat Valencia (Projects PROMETEOII/2014/047 and AICO/2017/093) is gratefully acknowledged. T. Godoy-Reyes is grateful to the Generalitat Valenciana for her Santiago Grisolia fellowship.Godoy-Reyes, TM.; Costero, AM.; Gaviña, P.; Martínez-Máñez, R.; Sancenón Galarza, F. (2019). A Colorimetric Probe for the Selective Detection of Norepinephrine Based on a Double Molecular Recognition with Functionalized Gold Nanoparticles. ACS Applied Nano Materials. 2(3):1367-1373. https://doi.org/10.1021/acsanm.8b02254S136713732

    Mesoporous Silica-Based Materials with Bactericidal Properties

    Full text link
    This is the peer reviewed version of the following article: Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., Martínez-Máñez, R., Mesoporous Silica-Based Materials with Bactericidal Properties. Small 2019, 15, 1900669. https://doi.org/10.1002/smll.201900669 , which has been published in final form at https://doi.org/10.1002/smll.201900669. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Bacterial infections are the main cause of chronic infections and even mortality. In fact, due to extensive use of antibiotics and, then, emergence of antibiotic resistance, treatment of such infections by conventional antibiotics has become a major concern worldwide. One of the promising strategies to treat infection diseases is the use of nanomaterials. Among them, mesoporous silica materials (MSMs) have attracted burgeoning attention due to high surface area, tunable pore/particle size, and easy surface functionalization. This review discusses how one can exploit capacities of MSMs to design and fabricate multifunctional/controllable drug delivery systems (DDSs) to combat bacterial infections. At first, the emergency of bacterial and biofilm resistance toward conventional antimicrobials is described and then how nanoparticles exert their toxic effects upon pathogenic cells is discussed. Next, the main aspects of MSMs (e.g., physicochemical properties, multifunctionality, and biosafety) which one should consider in the design of MSM-based DDSs against bacterial infections are introduced. Finally, a comprehensive analysis of all the papers published dealing with the use of MSMs for delivery of antibacterial chemicals (antimicrobial agents functionalized/adsorbed on mesoporous silica (MS), MS-loaded with antimicrobial agents, gated MS-loaded with antimicrobial agents, MS with metal-based nanoparticles, and MS-loaded with metal ions) is provided.The authors thank the Spanish Government (projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047 and PROMETEO/2018/024) for support. A.B. thanks the Spanish Government for her Juan de la Cierva incorporacion contract IJCI-2014-21534.Bernardos Bau, A.; Piacenza, E.; Sancenón Galarza, F.; Hamidi, M.; Maleki, A.; Turner, R.; Martínez-Máñez, R. (2019). Mesoporous Silica-Based Materials with Bactericidal Properties. Small. 15(24):1-34. https://doi.org/10.1002/smll.201900669S134152

    A New Simple Chromo-fluorogenic Probe for NO2 Detection in Air

    Full text link
    [EN] A new chromo-fluorogenic probe, consisting of a biphenyl derivative containing both a silylbenzyl ether and a N,N-dimethylamino group, for NO2 detection in the gas phase has been developed. A clear colour change from colourless to yellow together with an emission quenching was observed when the probe reacted with NO2. A limit of detection to the naked eye of about 0.1 ppm was determined and the system was successfully applied to the detection of NO2 in realistic atmospheric conditions.We thank the Spanish Government (MAT2012‐38429‐C04) and Generalitat Valenciana (PROMETEOII/2014/047) for support. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. We thank Dr. A. Múñoz from the CEAM (Valencia‐Spain) for her help for the development of the measures in real environment.Juarez, LA.; Costero, AM.; Sancenón Galarza, F.; Martínez-Máñez, R.; Parra Álvarez, M.; Gaviña Costero, P. (2015). A New Simple Chromo-fluorogenic Probe for NO2 Detection in Air. Chemistry - A European Journal. 21(24):8720-8722. doi:10.1002/chem.201500608S87208722212

    NO2-controlled cargo delivery from gated silica mesoporous nanoparticles

    Full text link
    [EN] Cargo delivery from mesoporous silica nanoparticles loaded with sulforhodamine B and capped with a difluoroboron-dipyrromethene (BODIPY) derivative was triggered by a NO2-induced oxidative process.The authors thank the financial support from the Spanish Government (project MAT2015-64139-C4-R) and the Generalitat Valenciana (project GVA/2014/13).Juarez, LA.; Costero, AM.; Parra Alvarez, M.; Gaviña, P.; Gil Grau, S.; Martínez-Máñez, R.; Sancenón Galarza, F. (2017). NO2-controlled cargo delivery from gated silica mesoporous nanoparticles. Chemical Communications. 53(3):585-588. https://doi.org/10.1039/c6cc08885fS585588533ARIGA, K., VINU, A., HILL, J., & MORI, T. (2007). Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coordination Chemistry Reviews, 251(21-24), 2562-2591. doi:10.1016/j.ccr.2007.02.024Katz, E., & Willner, I. (2004). Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angewandte Chemie International Edition, 43(45), 6042-6108. doi:10.1002/anie.200400651Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734Puoci, F., Iemma, F., & Picci, N. (2008). Stimuli-Responsive Molecularly Imprinted Polymers for Drug Delivery: A Review. Current Drug Delivery, 5(2), 85-96. doi:10.2174/156720108783954888Siepmann, F., Siepmann, J., Walther, M., MacRae, R. J., & Bodmeier, R. (2008). Polymer blends for controlled release coatings. Journal of Controlled Release, 125(1), 1-15. doi:10.1016/j.jconrel.2007.09.012Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60(15), 1638-1649. doi:10.1016/j.addr.2008.08.002Pouton, C. W., & Porter, C. J. H. (2008). Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Advanced Drug Delivery Reviews, 60(6), 625-637. doi:10.1016/j.addr.2007.10.010Rijcken, C. J. F., Soga, O., Hennink, W. E., & Nostrum, C. F. van. (2007). Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery. Journal of Controlled Release, 120(3), 131-148. doi:10.1016/j.jconrel.2007.03.023Andresen, T. L., Jensen, S. S., & Jørgensen, K. (2005). Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release. Progress in Lipid Research, 44(1), 68-97. doi:10.1016/j.plipres.2004.12.001Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334mKickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751Stein, A. (2003). Advances in Microporous and Mesoporous Solids—Highlights of Recent Progress. Advanced Materials, 15(10), 763-775. doi:10.1002/adma.200300007Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Soler-Illia, G. J. A. A., & Azzaroni, O. (2011). Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chemical Society Reviews, 40(2), 1107. doi:10.1039/c0cs00208aSaha, S., Leung, K. C.-F., Nguyen, T. D., Stoddart, J. F., & Zink, J. I. (2007). Nanovalves. Advanced Functional Materials, 17(5), 685-693. doi:10.1002/adfm.200600989Wang, F., Liu, X., & Willner, I. (2014). DNA Switches: From Principles to Applications. Angewandte Chemie International Edition, 54(4), 1098-1129. doi:10.1002/anie.201404652Song, N., & Yang, Y.-W. (2015). Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 44(11), 3474-3504. doi:10.1039/c5cs00243eTrewyn, B. G., Giri, S., Slowing, I. I., & Lin, V. S.-Y. (2007). Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chemical Communications, (31), 3236. doi:10.1039/b701744hSancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., & Amorós, P. (2006). New Methods for Anion Recognition and Signaling Using Nanoscopic Gatelike Scaffoldings. Angewandte Chemie International Edition, 45(40), 6661-6664. doi:10.1002/anie.200602045Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703dÖzalp, V. C., & Schäfer, T. (2011). Aptamer-Based Switchable Nanovalves for Stimuli-Responsive Drug Delivery. Chemistry - A European Journal, 17(36), 9893-9896. doi:10.1002/chem.201101403Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243Wen, Y., Xu, L., Li, C., Du, H., Chen, L., Su, B., … Song, Y. (2012). DNA-based intelligent logic controlled release systems. Chemical Communications, 48(67), 8410. doi:10.1039/c2cc34501cZhang, Z., Balogh, D., Wang, F., & Willner, I. (2013). Smart Mesoporous SiO2 Nanoparticles for the DNAzyme-Induced Multiplexed Release of Substrates. Journal of the American Chemical Society, 135(5), 1934-1940. doi:10.1021/ja311385yZhou, Y., Tan, L.-L., Li, Q.-L., Qiu, X.-L., Qi, A.-D., Tao, Y., & Yang, Y.-W. (2014). Acetylcholine-Triggered Cargo Release from Supramolecular Nanovalves Based on Different Macrocyclic Receptors. Chemistry - A European Journal, 20(11), 2998-3004. doi:10.1002/chem.201304864Chen, M., Huang, C., He, C., Zhu, W., Xu, Y., & Lu, Y. (2012). A glucose-responsive controlled release system using glucose oxidase-gated mesoporous silica nanocontainers. Chemical Communications, 48(76), 9522. doi:10.1039/c2cc34290aCliment, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456dYang, S., Li, N., Liu, Z., Sha, W., Chen, D., Xu, Q., & Lu, J. (2014). Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. Nanoscale, 6(24), 14903-14910. doi:10.1039/c4nr05305bSchloßbauer, A., Sauer, A. M., Cauda, V., Schmidt, A., Engelke, H., Rothbauer, U., … Bein, T. (2012). Cascaded Photoinduced Drug Delivery to Cells from Multifunctional Core-Shell Mesoporous Silica. Advanced Healthcare Materials, 1(3), 316-320. doi:10.1002/adhm.201100033Mackowiak, S. A., Schmidt, A., Weiss, V., Argyo, C., von Schirnding, C., Bein, T., & Bräuchle, C. (2013). Targeted Drug Delivery in Cancer Cells with Red-Light Photoactivated Mesoporous Silica Nanoparticles. Nano Letters, 13(6), 2576-2583. doi:10.1021/nl400681fSilveira, G. Q., Vargas, M. D., & Ronconi, C. M. (2011). Nanoreservoir operated by ferrocenyl linker oxidation with molecular oxygen. Journal of Materials Chemistry, 21(16), 6034. doi:10.1039/c0jm03738aColl, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469El Sayed, S., Milani, M., Milanese, C., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2016). Anions as Triggers in Controlled Release Protocols from Mesoporous Silica Nanoparticles Functionalized with Macrocyclic Copper(II) Complexes. Chemistry - A European Journal, 22(39), 13935-13945. doi:10.1002/chem.201601024De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822Climent, E., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Murguía, J. R., … Pérez-Payá, E. (2013). Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials:MycoplasmaDetection. Angewandte Chemie International Edition, 52(34), 8938-8942. doi:10.1002/anie.201302954Li, H., Chen, L., Guo, Z., Sang, N., & Li, G. (2012). In vivo screening to determine neurological hazards of nitrogen dioxide (NO2) using Wistar rats. Journal of Hazardous Materials, 225-226, 46-53. doi:10.1016/j.jhazmat.2012.04.063Folinsbee, L. J. (1993). Human health effects of air pollution. Environmental Health Perspectives, 100, 45-56. doi:10.1289/ehp.9310045Melia, R. J., Florey, C. D., Altman, D. G., & Swan, A. V. (1977). Association between gas cooking and respiratory disease in children. BMJ, 2(6080), 149-152. doi:10.1136/bmj.2.6080.149Neas, L. M., Dockery, D. W., Ware, J. H., Spengler, J. D., Speizer, F. E., & Ferris, B. G. (1991). Association of Indoor Nitrogen Dioxide with Respiratory Symptoms and Pulmonary Function in Children. American Journal of Epidemiology, 134(2), 204-219. doi:10.1093/oxfordjournals.aje.a116073Meng, X., Wang, C., Cao, D., Wong, C.-M., & Kan, H. (2013). Short-term effect of ambient air pollution on COPD mortality in four Chinese cities. Atmospheric Environment, 77, 149-154. doi:10.1016/j.atmosenv.2013.05.001Shim, S. B., Kim, K., & Kim, Y. H. (1987). Direct conversion of oximes and hydrazones into their ketones with dinitrogen tetroxide. Tetrahedron Letters, 28(6), 645-648. doi:10.1016/s0040-4039(00)95802-7Mokhtari, J., Naimi-Jamal, M. R., Hamzeali, H., Dekamin, M. G., & Kaupp, G. (2009). Kneading Ball-Milling and Stoichiometric Melts for the Quantitative Derivatization of Carbonyl Compounds with Gas-Solid Recovery. ChemSusChem, 2(3), 248-254. doi:10.1002/cssc.200800258Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7Radu, D. R., Lai, C.-Y., Jeftinija, K., Rowe, E. W., Jeftinija, S., & Lin, V. S.-Y. (2004). A Polyamidoamine Dendrimer-Capped Mesoporous Silica Nanosphere-Based Gene Transfection Reagent. Journal of the American Chemical Society, 126(41), 13216-13217. doi:10.1021/ja046275mJuárez, L. A., Costero, A. M., Parra, M., Gaviña, P., & Gil, S. (2016). 3-Formyl-BODIPY Phenylhydrazone as a Chromo-Fluorogenic Probe for Selective Detection of NO2(g). Chemistry - A European Journal, 22(25), 8448-8451. doi:10.1002/chem.20160092

    Acetylcholine-responsive cargo release using acetylcholinesterase-capped nanomaterials

    Full text link
    [EN] Mesoporous silica nanoparticles capped with acetylcholinesterase, through boronic ester linkages, selectively release an entrapped cargo in the presence of acetylcholine.The authors acknowledge financial support from the Spanish Government (MAT2015-64139-C4-1-R, MAT2015-64139-C4-4-R and AGL2015-70235-C2-2-R) and the Generalitat Valenciana (PROMETEO2018/024). T. Godoy-Reyes is grateful to Generalitat Valenciana for her Santiago Grisollía fellowship. A. García-Fernández is grateful to the Spanish Government for her FPU fellowshipGodoy-Reyes, TM.; Llopis-Lorente, A.; García-Fernández, A.; Gaviña, P.; Costero, AM.; Martínez-Máñez, R.; Sancenón Galarza, F. (2019). Acetylcholine-responsive cargo release using acetylcholinesterase-capped nanomaterials. Chemical Communications. 55(41):5785-5788. https://doi.org/10.1039/c9cc02602aS578557885541McCorry, L. K. (2007). Physiology of the Autonomic Nervous System. American Journal of Pharmaceutical Education, 71(4), 78. doi:10.5688/aj710478W. M. Haschek , C. G.Rousseaux and M. A.Wallig , Nervous System , in Fundamentals of Toxicologic Pathology , 2nd edn, Academic Press CY , San Diego , 2010 , p. 377Klinkenberg, I., Sambeth, A., & Blokland, A. (2011). Acetylcholine and attention. Behavioural Brain Research, 221(2), 430-442. doi:10.1016/j.bbr.2010.11.033Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16(6), 710-715. doi:10.1016/j.conb.2006.09.002An, M. C., Lin, W., Yang, J., Dominguez, B., Padgett, D., Sugiura, Y., … Lee, K.-F. (2010). Acetylcholine negatively regulates development of the neuromuscular junction through distinct cellular mechanisms. Proceedings of the National Academy of Sciences, 107(23), 10702-10707. doi:10.1073/pnas.1004956107Ehrenstein, G., Galdzicki, Z., & Lange, G. D. (1997). The choline-leakage hypothesis for the loss of acetylcholine in Alzheimer’s disease. Biophysical Journal, 73(3), 1276-1280. doi:10.1016/s0006-3495(97)78160-8Fambrough, D. M., Drachman, D. B., & Satyamurti, S. (1973). Neuromuscular Junction in Myasthenia Gravis: Decreased Acetylcholine Receptors. Science, 182(4109), 293-295. doi:10.1126/science.182.4109.293Casey, D. E., Gerlach, J., & Christensson, E. (1980). Dopamine, acetylcholine, and GABA effects in acute dystonia in primates. Psychopharmacology, 70(1), 83-87. doi:10.1007/bf00432375Bartels, A. L., & Leenders, K. L. (2009). Parkinson’s disease: The syndrome, the pathogenesis and pathophysiology. Cortex, 45(8), 915-921. doi:10.1016/j.cortex.2008.11.010Aosaki, T., Miura, M., Suzuki, T., Nishimura, K., & Masuda, M. (2010). Acetylcholine-dopamine balance hypothesis in the striatum: An update. Geriatrics & Gerontology International, 10, S148-S157. doi:10.1111/j.1447-0594.2010.00588.xMura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. doi:10.1038/nmat3776Pattni, B. S., Chupin, V. V., & Torchilin, V. P. (2015). New Developments in Liposomal Drug Delivery. Chemical Reviews, 115(19), 10938-10966. doi:10.1021/acs.chemrev.5b00046Ulbrich, K., Holá, K., Šubr, V., Bakandritsos, A., Tuček, J., & Zbořil, R. (2016). Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chemical Reviews, 116(9), 5338-5431. doi:10.1021/acs.chemrev.5b00589Tang, F., Li, L., & Chen, D. (2012). Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24(12), 1504-1534. doi:10.1002/adma.201104763Song, N., & Yang, Y.-W. (2015). Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 44(11), 3474-3504. doi:10.1039/c5cs00243eAznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Abad, J. M., Vélez, M., Santamaría, C., Guisán, J. M., Matheus, P. R., Vázquez, L., … Fernández, V. M. (2002). Immobilization of Peroxidase Glycoprotein on Gold Electrodes Modified with Mixed Epoxy-Boronic Acid Monolayers. Journal of the American Chemical Society, 124(43), 12845-12853. doi:10.1021/ja026658pZhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S.-Y. (2009). Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. Journal of the American Chemical Society, 131(24), 8398-8400. doi:10.1021/ja901831uDíez, P., Esteban-Fernández de Ávila, B., Ramírez-Herrera, D. E., Villalonga, R., & Wang, J. (2017). Biomedical nanomotors: efficient glucose-mediated insulin release. Nanoscale, 9(38), 14307-14311. doi:10.1039/c7nr05535hBarrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023Narendranath, N. V., Thomas, K. C., & Ingledew, W. M. (2001). Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. Journal of Industrial Microbiology and Biotechnology, 26(3), 171-177. doi:10.1038/sj.jim.7000090Zhang, N., Zhao, F., Zou, Q., Li, Y., Ma, G., & Yan, X. (2016). Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation. Small, 12(43), 5936-5943. doi:10.1002/smll.201602339Wang, C.-I., Chen, W.-T., & Chang, H.-T. (2012). Enzyme Mimics of Au/Ag Nanoparticles for Fluorescent Detection of Acetylcholine. Analytical Chemistry, 84(22), 9706-9712. doi:10.1021/ac300867sSchena, A., & Johnsson, K. (2013). Sensing Acetylcholine and Anticholinesterase Compounds. Angewandte Chemie International Edition, 53(5), 1302-1305. doi:10.1002/anie.201307754Vizi, E., Fekete, A., Karoly, R., & Mike, A. (2010). Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. British Journal of Pharmacology, 160(4), 785-809. doi:10.1111/j.1476-5381.2009.00624.xZhou, Y., Tan, L.-L., Li, Q.-L., Qiu, X.-L., Qi, A.-D., Tao, Y., & Yang, Y.-W. (2014). Acetylcholine-Triggered Cargo Release from Supramolecular Nanovalves Based on Different Macrocyclic Receptors. Chemistry - A European Journal, 20(11), 2998-3004. doi:10.1002/chem.201304864Scherer, W. F., Syverton, J. T., & Gey, G. O. (1953). STUDIES ON THE PROPAGATION IN VITRO OF POLIOMYELITIS VIRUSES. Journal of Experimental Medicine, 97(5), 695-710. doi:10.1084/jem.97.5.695Li, S., Zou, Q., Li, Y., Yuan, C., Xing, R., & Yan, X. (2018). Smart Peptide-Based Supramolecular Photodynamic Metallo-Nanodrugs Designed by Multicomponent Coordination Self-Assembly. Journal of the American Chemical Society, 140(34), 10794-10802. doi:10.1021/jacs.8b0491

    A new class of silica-supported chromo-fluorogenic chemosensors for anion recognition based on a selenourea scaffold

    Full text link
    [EN] The first example of a chemosensor (L) containing a selenourea moiety is described here. L is able to colorimetrically sense the presence of CN- and S2- in H2O: MeCN (75 : 25, v/v). Moreover, when L is loaded into functionalised mesoporous silica nanoparticles an increase in the selectivity towards S2- occurs via a selective fluorescence response.The authors thank the financial support from the Fondazione Banco di Sardegna, the Spanish Government, European FEDER funds (project MAT2015-64139-C4-1-R) and the Generalitat Valenciana (project PROMETEOII/2014/047). A. Llopis-Lorente is grateful to the "La Caixa'' Banking Foundation for his PhD fellowship. Dr Tiziana Pivetta is gratefully acknowledged for help with the interpretation of the mass spectra.Casula, A.; Llopis-Lorente, A.; Garau, A.; Isaia, F.; Kubicki, M.; Lippolis, V.; Sancenón Galarza, F.... (2017). A new class of silica-supported chromo-fluorogenic chemosensors for anion recognition based on a selenourea scaffold. Chemical Communications. 53(26):3729-3732. https://doi.org/10.1039/c7cc01214dS372937325326Lee, S., Yuen, K. K. Y., Jolliffe, K. A., & Yoon, J. (2015). Fluorescent and colorimetric chemosensors for pyrophosphate. Chemical Society Reviews, 44(7), 1749-1762. doi:10.1039/c4cs00353eZhang, J. F., Zhou, Y., Yoon, J., & Kim, J. S. (2011). Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chemical Society Reviews, 40(7), 3416. doi:10.1039/c1cs15028fZhou, X., Lee, S., Xu, Z., & Yoon, J. (2015). Recent Progress on the Development of Chemosensors for Gases. Chemical Reviews, 115(15), 7944-8000. doi:10.1021/cr500567rZhou, Y., & Yoon, J. (2012). Recent progress in fluorescent and colorimetric chemosensors for detection ofamino acids. Chem. Soc. Rev., 41(1), 52-67. doi:10.1039/c1cs15159bBusschaert, N., Caltagirone, C., Van Rossom, W., & Gale, P. A. (2015). Applications of Supramolecular Anion Recognition. Chemical Reviews, 115(15), 8038-8155. doi:10.1021/acs.chemrev.5b00099Gale, P. A., & Caltagirone, C. (2015). Anion sensing by small molecules and molecular ensembles. Chemical Society Reviews, 44(13), 4212-4227. doi:10.1039/c4cs00179fPanda, S., Panda, A., & Zade, S. S. (2015). Organoselenium compounds as fluorescent probes. Coordination Chemistry Reviews, 300, 86-100. doi:10.1016/j.ccr.2015.04.006Manjare, S. T., Kim, Y., & Churchill, D. G. (2014). Selenium- and Tellurium-Containing Fluorescent Molecular Probes for the Detection of Biologically Important Analytes. Accounts of Chemical Research, 47(10), 2985-2998. doi:10.1021/ar500187vWu, D., Chen, L., Kwon, N., & Yoon, J. (2016). Fluorescent Probes Containing Selenium as a Guest or Host. Chem, 1(5), 674-698. doi:10.1016/j.chempr.2016.10.005Mukherjee, A. J., Zade, S. S., Singh, H. B., & Sunoj, R. B. (2010). Organoselenium Chemistry: Role of Intramolecular Interactions†. Chemical Reviews, 110(7), 4357-4416. doi:10.1021/cr900352jManjare, S. T., Kim, S., Heo, W. D., & Churchill, D. G. (2013). Selective and Sensitive Superoxide Detection with a New Diselenide-Based Molecular Probe in Living Breast Cancer Cells. Organic Letters, 16(2), 410-412. doi:10.1021/ol4033013Kim, Y., Choi, M., Manjare, S. T., Jon, S., & Churchill, D. G. (2016). Diselenide-based probe for the selective imaging of hypochlorite in living cancer cells. RSC Advances, 6(38), 32013-32017. doi:10.1039/c6ra04257kYu, F., Li, P., Li, G., Zhao, G., Chu, T., & Han, K. (2011). A Near-IR Reversible Fluorescent Probe Modulated by Selenium for Monitoring Peroxynitrite and Imaging in Living Cells. Journal of the American Chemical Society, 133(29), 11030-11033. doi:10.1021/ja202582xSaravanan, C., Easwaramoorthi, S., Hsiow, C.-Y., Wang, K., Hayashi, M., & Wang, L. (2013). Benzoselenadiazole Fluorescent Probes – Near-IR Optical and Ratiometric Fluorescence Sensor for Fluoride Ion. Organic Letters, 16(2), 354-357. doi:10.1021/ol403082pGoswami, S., Hazra, A., Chakrabarty, R., & Fun, H.-K. (2009). Recognition of Carboxylate Anions and Carboxylic Acids by Selenium-Based New Chromogenic Fluorescent Sensor: A Remarkable Fluorescence Enhancement of Hindered Carboxylates. Organic Letters, 11(19), 4350-4353. doi:10.1021/ol901737sHussain, R. A., Badshah, A., & Shah, A. (2014). Synthesis and biological applications of selenoureas. Applied Organometallic Chemistry, 28(2), 61-73. doi:10.1002/aoc.3093Hussain, R. A., Badshah, A., Tahir, M. N., Hassan, T.-, & Bano, A. (2013). Synthesis, Chemical Characterization, DNA Binding, Antioxidant, Antibacterial, and Antifungal Activities of Ferrocence Incorporated Selenoureas. Journal of Biochemical and Molecular Toxicology, 28(2), 60-68. doi:10.1002/jbt.21536Hussain, R. A., Badshah, A., Tahir, M. N., Lal, B., & Khan, I. A. (2013). Synthesis, Chemical Characterisation, and DNA Binding Studies of Ferrocene-Incorporated Selenoureas. Australian Journal of Chemistry, 66(6), 626. doi:10.1071/ch12570Hussain, R. A., Badshash, A., Sohail, M., Lal, B., & Altaf, A. A. (2013). Synthesis, chemical characterization, DNA interaction and antioxidant studies of ortho, meta and para fluoro substituted ferrocene incorporated selenoureas. Inorganica Chimica Acta, 402, 133-139. doi:10.1016/j.ica.2013.04.003Takahashi, H., Nishina, A., Fukumoto, R., Kimura, H., Koketsu, M., & Ishihara, H. (2005). Selenoureas and thioureas are effective superoxide radical scavengers in vitro. Life Sciences, 76(19), 2185-2192. doi:10.1016/j.lfs.2004.08.037Caltagirone, C., Bazzicalupi, C., Bencini, A., Isaia, F., Garau, A., & Lippolis, V. (2012). Anion recognition properties of pyridine-2,6-dicarboxamide and isophthalamide derivatives containingl-tryptophan moieties. Supramolecular Chemistry, 24(2), 95-100. doi:10.1080/10610278.2011.628391Caltagirone, C., Bazzicalupi, C., Isaia, F., Light, M. E., Lippolis, V., Montis, R., … Picci, G. (2013). A new family of bis-ureidic receptors for pyrophosphate optical sensing. Organic & Biomolecular Chemistry, 11(15), 2445. doi:10.1039/c3ob27244cCasula, A., Bazzicalupi, C., Bettoschi, A., Cadoni, E., Coles, S. J., Horton, P. N., … Caltagirone, C. (2016). Fluorescent asymmetric bis-ureas for pyrophosphate recognition in pure water. Dalton Transactions, 45(7), 3078-3085. doi:10.1039/c5dt04497aOlivari, M., Montis, R., Karagiannidis, L. E., Horton, P. N., Mapp, L. K., Coles, S. J., … Caltagirone, C. (2015). Anion complexation, transport and structural studies of a series of bis-methylurea compounds. Dalton Transactions, 44(5), 2138-2149. doi:10.1039/c4dt02893gTetilla, M. A., Aragoni, M. C., Arca, M., Caltagirone, C., Bazzicalupi, C., Bencini, A., … Meli, V. (2011). Colorimetric response to anions by a «robust» copper(ii) complex of a [9]aneN3 pendant arm derivative: CN− and I− selective sensing. Chemical Communications, 47(13), 3805. doi:10.1039/c0cc04500dFernández-Bolaños, J. G., López, Ó., Ulgar, V., Maya, I., & Fuentes, J. (2004). Synthesis of O -unprotected glycosyl selenoureas. A new access to bicyclic sugar isoureas. Tetrahedron Letters, 45(21), 4081-4084. doi:10.1016/j.tetlet.2004.03.143GANS, P., SABATINI, A., & VACCA, A. (1996). Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta, 43(10), 1739-1753. doi:10.1016/0039-9140(96)01958-3H. Deddek , Progress in NMR Spectroscopy, Pergamon, Oxford, 1995, vol. 27, pp. 1–323Bigoli, F., Demartin, F., Deplano, P., Devillanova, F. A., Isaia, F., Lippolis, V., … Trogu, E. F. (1996). Synthesis, Characterization, and Crystal Structures of New Dications Bearing the −Se−Se− Bridge. Inorganic Chemistry, 35(11), 3194-3201. doi:10.1021/ic9510019Isaia, F., Aragoni, M. C., Arca, M., Demartin, F., Devillanova, F. A., Floris, G., … Verani, G. (2008). Interaction of Methimazole with I2: X-ray Crystal Structure of the Charge Transfer Complex Methimazole−I2. Implications for the Mechanism of Action of Methimazole-Based Antithyroid Drugs. Journal of Medicinal Chemistry, 51(13), 4050-4053. doi:10.1021/jm8001857Roy, G., Bhabak, K. P., & Mugesh, G. (2011). Interactions of Antithyroid Drugs and Their Analogues with Halogens and their Biological Implications. Crystal Growth & Design, 11(6), 2279-2286. doi:10.1021/cg101688vCliment, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847Santos-Figueroa, L. E., Giménez, C., Agostini, A., Aznar, E., Marcos, M. D., Sancenón, F., … Amorós, P. (2013). Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic-Inorganic Silica Nanoparticles. Angewandte Chemie International Edition, 52(51), 13712-13716. doi:10.1002/anie.20130668

    Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles

    Full text link
    [EN] A new gated nanodevice design able to control cargo delivery using glucose as a trigger and cyclodextrin-modified glucose oxidase as a capping agent is reported.Financial support from the Spanish Government (projects MAT2012-38429-C04-01 and CTQ2011-24355), Generalitat Valenciana (project PROMETEO/2009/016), UPV (project SP20120795) and Ramon y Cajal Programme (to R. V.) is gratefully acknowledged.Aznar Gimeno, E.; Villalonga, R.; Giménez Morales, C.; Sancenón Galarza, F.; Marcos Martínez, MD.; Martínez Mañez, R.; Díez, P.... (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications. 49(57):6391-6393. https://doi.org/10.1039/c3cc42210kS639163934957Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980Cotí, K. K., Belowich, M. E., Liong, M., Ambrogio, M. W., Lau, Y. A., Khatib, H. A., … Stoddart, J. F. (2009). Mechanised nanoparticles for drug delivery. Nanoscale, 1(1), 16. doi:10.1039/b9nr00162jKresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0Lai, C.-Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V. S.-Y. (2003). A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society, 125(15), 4451-4459. doi:10.1021/ja028650lPark, C., Oh, K., Lee, S. C., & Kim, C. (2007). Controlled Release of Guest Molecules from Mesoporous Silica Particles Based on a pH-Responsive Polypseudorotaxane Motif. Angewandte Chemie International Edition, 46(9), 1455-1457. doi:10.1002/anie.200603404Casasús, R., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2008). Dual Aperture Control on pH- and Anion-Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles. Journal of the American Chemical Society, 130(6), 1903-1917. doi:10.1021/ja0756772Liu, R., Liao, P., Liu, J., & Feng, P. (2011). Responsive Polymer-Coated Mesoporous Silica as a pH-Sensitive Nanocarrier for Controlled Release. Langmuir, 27(6), 3095-3099. doi:10.1021/la104973jCliment, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362Fu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756Bringas, E., Köysüren, Ö., Quach, D. V., Mahmoudi, M., Aznar, E., Roehling, J. D., … Stroeve, P. (2012). Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 48(45), 5647. doi:10.1039/c2cc31563gPatel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818Park, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499dAgostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456dZhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S.-Y. (2009). Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. Journal of the American Chemical Society, 131(24), 8398-8400. doi:10.1021/ja901831uHolzinger, M., Bouffier, L., Villalonga, R., & Cosnier, S. (2009). Adamantane/β-cyclodextrin affinity biosensors based on single-walled carbon nanotubes. Biosensors and Bioelectronics, 24(5), 1128-1134. doi:10.1016/j.bios.2008.06.029Oliver, N. S., Toumazou, C., Cass, A. E. G., & Johnston, D. G. (2009). Glucose sensors: a review of current and emerging technology. Diabetic Medicine, 26(3), 197-210. doi:10.1111/j.1464-5491.2008.02642.xWu, Q., Wang, L., Yu, H., Wang, J., & Chen, Z. (2011). Organization of Glucose-Responsive Systems and Their Properties. Chemical Reviews, 111(12), 7855-7875. doi:10.1021/cr200027jXu, Y., Pehrsson, P. E., Chen, L., Zhang, R., & Zhao, W. (2007). Double-Stranded DNA Single-Walled Carbon Nanotube Hybrids for Optical Hydrogen Peroxide and Glucose Sensing. The Journal of Physical Chemistry C, 111(24), 8638-8643. doi:10.1021/jp0709611Song, C., Pehrsson, P. E., & Zhao, W. (2006). Optical enzymatic detection of glucose based on hydrogen peroxide-sensitive HiPco carbon nanotubes. Journal of Materials Research, 21(11), 2817-2823. doi:10.1557/jmr.2006.0343Badugu, R., Lakowicz, J. R., & Geddes, C. D. (2004). Noninvasive Continuous Monitoring of Physiological Glucose Using a Monosaccharide-Sensing Contact Lens. Analytical Chemistry, 76(3), 610-618. doi:10.1021/ac030372

    A sensitive nanosensor for the in situ detection of the cannibal drug

    Full text link
    [EN] A bio-inspired nanodevice for the selective and sensitive fluorogenic detection of 3,4- methylenedioxypyrovalerone (MDPV), usually known as Cannibal drug, is reported. The sensing nanodevice is based on mesoporous silica nanoparticles (MSNs), loaded with a fluorescent reporter (rhodamine B) and functionalized on their external surface with a dopamine derivative (3), which specifically interacts with the recombinant human dopamine transporter (DAT), capping the pores. In the presence of MDPV, DAT detaches from the MSNs consequently causing rhodamine B release and allowing drug detection. The nanosensor shows a detection limit of 5.2 µM and it is able to detect the MDPV drug both in saliva and blood plasma samples.The authors thank the Spanish Government (projects RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and CTQ2017-87954-P) and the Generalitat Valencia (PROMETEO/2018/024) for support. E.G. is grateful to the Spanish MEC for her FPU grant. M.A. thanks her postdoctoral fellowship (PAID -10-17). The authors also thank the Electron Microscopy Service at the UPV for support.Garrido-García, EM.; Alfonso-Navarro, M.; Díaz De Greñu-Puertas, B.; Marcos Martínez, MD.; Costero, AM.; Gil Grau, S.; Sancenón Galarza, F.... (2020). A sensitive nanosensor for the in situ detection of the cannibal drug. ACS Sensors. 5(9):2966-2972. https://doi.org/10.1021/acssensors.0c01553S2966297259World drug report United Nations Office on Drugs and Crime (UNODC). Inform; 2019.European drug report Trends and Developments. European Monitoring Centre for Drugs and Drug Addition (EMCDDA). Inform; 2019.Zawilska, J. B., & Wojcieszak, J. (2013). Designer cathinones—An emerging class of novel recreational drugs. Forensic Science International, 231(1-3), 42-53. doi:10.1016/j.forsciint.2013.04.015Coppola, M., & Mondola, R. (2012). 3,4-Methylenedioxypyrovalerone (MDPV): Chemistry, pharmacology and toxicology of a new designer drug of abuse marketed online. Toxicology Letters, 208(1), 12-15. doi:10.1016/j.toxlet.2011.10.002Coppola, M., & Mondola, R. (2012). Synthetic cathinones: Chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as «bath salts» or «plant food». Toxicology Letters, 211(2), 144-149. doi:10.1016/j.toxlet.2012.03.009Oliver, C. F., Palamar, J. J., Salomone, A., Simmons, S. J., Philogene-Khalid, H. L., Stokes-McCloskey, N., & Rawls, S. M. (2018). Synthetic cathinone adulteration of illegal drugs. Psychopharmacology, 236(3), 869-879. doi:10.1007/s00213-018-5066-6Riley, A. L., Nelson, K. H., To, P., López-Arnau, R., Xu, P., Wang, D., … Hall, F. S. (2020). Abuse potential and toxicity of the synthetic cathinones (i.e., «Bath salts»). Neuroscience & Biobehavioral Reviews, 110, 150-173. doi:10.1016/j.neubiorev.2018.07.015Ibáñez, M., Pozo, Ó. J., Sancho, J. V., Orengo, T., Haro, G., & Hernández, F. (2015). Analytical strategy to investigate 3,4-methylenedioxypyrovalerone (MDPV) metabolites in consumers’ urine by high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 408(1), 151-164. doi:10.1007/s00216-015-9088-1Colon-Perez, L. M., Pino, J. A., Saha, K., Pompilus, M., Kaplitz, S., Choudhury, N., … Febo, M. (2018). Functional connectivity, behavioral and dopaminergic alterations 24 hours following acute exposure to synthetic bath salt drug methylenedioxypyrovalerone. Neuropharmacology, 137, 178-193. doi:10.1016/j.neuropharm.2018.04.031Eshleman, A. J., Nagarajan, S., Wolfrum, K. M., Reed, J. F., Swanson, T. L., Nilsen, A., & Janowsky, A. (2018). Structure-activity relationships of bath salt components: substituted cathinones and benzofurans at biogenic amine transporters. Psychopharmacology, 236(3), 939-952. doi:10.1007/s00213-018-5059-5Glennon, R. A., & Young, R. (2016). Neurobiology of 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinovalerophenone (α-PVP). Brain Research Bulletin, 126, 111-126. doi:10.1016/j.brainresbull.2016.04.011Kraemer, M., Boehmer, A., Madea, B., & Maas, A. (2019). Death cases involving certain new psychoactive substances: A review of the literature. Forensic Science International, 298, 186-267. doi:10.1016/j.forsciint.2019.02.021Liveri, K., Constantinou, M. A., Afxentiou, M., & Kanari, P. (2016). A fatal intoxication related to MDPV and pentedrone combined with antipsychotic and antidepressant substances in Cyprus. Forensic Science International, 265, 160-165. doi:10.1016/j.forsciint.2016.02.017Marinetti, L. J., & Antonides, H. M. (2013). Analysis of Synthetic Cathinones Commonly Found in Bath Salts in Human Performance and Postmortem Toxicology: Method Development, Drug Distribution and Interpretation of Results. Journal of Analytical Toxicology, 37(3), 135-146. doi:10.1093/jat/bks136Freni, F., Bianco, S., Vignali, C., Groppi, A., Moretti, M., Osculati, A. M. M., & Morini, L. (2019). A multi-analyte LC–MS/MS method for screening and quantification of 16 synthetic cathinones in hair: Application to postmortem cases. Forensic Science International, 298, 115-120. doi:10.1016/j.forsciint.2019.02.036Peiró, M. de las N., Armenta, S., Garrigues, S., & de la Guardia, M. (2016). Determination of 3,4-methylenedioxypyrovalerone (MDPV) in oral and nasal fluids by ion mobility spectrometry. Analytical and Bioanalytical Chemistry, 408(12), 3265-3273. doi:10.1007/s00216-016-9395-1Cheng, S.-Y., Ng-A-Qui, T., Eng, B., & Ho, J. (2017). Detection of cathinone and mephedrone in plasma by LC-MS/MS using standard addition quantification technique. Journal of Analytical Science and Technology, 8(1). doi:10.1186/s40543-017-0128-7Glicksberg, L., Bryand, K., & Kerrigan, S. (2016). Identification and quantification of synthetic cathinones in blood and urine using liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry. Journal of Chromatography B, 1035, 91-103. doi:10.1016/j.jchromb.2016.09.027Mercieca, G., Odoardi, S., Cassar, M., & Strano Rossi, S. (2018). Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC–MS. Journal of Pharmaceutical and Biomedical Analysis, 149, 494-501. doi:10.1016/j.jpba.2017.11.024Gerace, E., Caneparo, D., Borio, F., Salomone, A., & Vincenti, M. (2019). Determination of several synthetic cathinones and an amphetamine‐like compound in urine by gas chromatography with mass spectrometry. Method validation and application to real cases. Journal of Separation Science, 42(8), 1577-1584. doi:10.1002/jssc.201801249Woźniak, M. K., Banaszkiewicz, L., Wiergowski, M., Tomczak, E., Kata, M., Szpiech, B., … Biziuk, M. (2019). Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34 synthetic cathinones in whole blood. Forensic Toxicology, 38(1), 42-58. doi:10.1007/s11419-019-00485-yJoshi, M., Cetroni, B., Camacho, A., Krueger, C., & Midey, A. J. (2014). Analysis of synthetic cathinones and associated psychoactive substances by ion mobility spectrometry. Forensic Science International, 244, 196-206. doi:10.1016/j.forsciint.2014.08.033Peters, J. R., Keasling, R., Brown, S. D., & Pond, B. B. (2016). Quantification of Synthetic Cathinones in Rat Brain Using HILIC–ESI-MS/MS. Journal of Analytical Toxicology. doi:10.1093/jat/bkw074Williams, M., Martin, J., & Galettis, P. (2017). A Validated Method for the Detection of 32 Bath Salts in Oral Fluid. Journal of Analytical Toxicology, 41(8), 659-669. doi:10.1093/jat/bkx055Diestelmann, M., Zangl, A., Herrle, I., Koch, E., Graw, M., & Paul, L. D. (2018). MDPV in forensic routine cases: Psychotic and aggressive behavior in relation to plasma concentrations. Forensic Science International, 283, 72-84. doi:10.1016/j.forsciint.2017.12.003Garrido, E., Pla, L., Lozano-Torres, B., El Sayed, S., Martínez-Máñez, R., & Sancenón, F. (2018). Chromogenic and Fluorogenic Probes for the Detection of Illicit Drugs. ChemistryOpen, 7(5), 401-428. doi:10.1002/open.201800034García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348jGiménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580Luis, B., Llopis‐Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., … Martínez‐Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986-14990. doi:10.1002/anie.201908867Garrido, E., Alfonso, M., Díaz de Greñu, B., Lozano‐Torres, B., Parra, M., Gaviña, P., … Sancenón, F. (2020). Nanosensor for Sensitive Detection of the New Psychedelic Drug 25I‐NBOMe. Chemistry – A European Journal, 26(13), 2813-2816. doi:10.1002/chem.201905688Ribes, À., Aznar, E., Santiago-Felipe, S., Xifre-Perez, E., Tormo-Mas, M. Á., Pemán, J., … Martínez-Máñez, R. (2019). Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sensors, 4(5), 1291-1298. doi:10.1021/acssensors.9b00169Oroval, M., Coll, C., Bernardos, A., Marcos, M. D., Martínez-Máñez, R., Shchukin, D. G., & Sancenón, F. (2017). Selective Fluorogenic Sensing of As(III) Using Aptamer-Capped Nanomaterials. ACS Applied Materials & Interfaces, 9(13), 11332-11336. doi:10.1021/acsami.6b15164Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210kGiménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580Maerten, C., Garnier, T., Lupattelli, P., Chau, N. T. T., Schaaf, P., Jierry, L., & Boulmedais, F. (2015). Morphogen Electrochemically Triggered Self-Construction of Polymeric Films Based on Mussel-Inspired Chemistry. Langmuir, 31(49), 13385-13393. doi:10.1021/acs.langmuir.5b03774Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020Cai, Q., Luo, Z.-S., Pang, W.-Q., Fan, Y.-W., Chen, X.-H., & Cui, F.-Z. (2001). Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium. Chemistry of Materials, 13(2), 258-263. doi:10.1021/cm990661zDebruyne, D., Loilier, M., Cesbron, A., Le Boisselier, R., & Bourgine, J. (2014). Emerging drugs of abuse: current perspectives on substituted cathinones. Substance Abuse and Rehabilitation, 37. doi:10.2147/sar.s37257Marusich, J. A., Antonazzo, K. R., Wiley, J. L., Blough, B. E., Partilla, J. S., & Baumann, M. H. (2014). Pharmacology of novel synthetic stimulants structurally related to the «bath salts» constituent 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology, 87, 206-213. doi:10.1016/j.neuropharm.2014.02.016Baumann, M. H., Partilla, J. S., Lehner, K. R., Thorndike, E. B., Hoffman, A. F., Holy, M., … Schindler, C. W. (2012). Powerful Cocaine-Like Actions of 3,4-Methylenedioxypyrovalerone (MDPV), a Principal Constituent of Psychoactive ‘Bath Salts’ Products. Neuropsychopharmacology, 38(4), 552-562. doi:10.1038/npp.2012.20
    corecore