3 research outputs found

    All-optical aggregation and distribution of traffic in large metropolitan area networks using multi-Tb/s S-BVTs

    Get PDF
    Current metropolitan area network architectures are based on a number of hierarchical levels that aggregate traffic toward the core at the IP layer. In this setting, routers are interconnected by means of fixed transceivers operating on a point-to-point basis where the rates of transceivers need to match. This implies a great deal of intermediate transceivers to collect traffic and groom and send it to the core. This paper proposes an alternative scheme based on sliceable bandwidth/bitrate variable transceivers (S-BVTs) where the slice-ability property is exploited to perform the aggregation of traffic from multiple edges �� -to-1 rather than 1-to-1. This approach can feature relevant cost reductions through IP offloading at intermediate transit nodes but requires viable optical signal-to-noise ratio (OSNR) margins for all-optical transmission through the network. In this work, we prove through simulation the viability and applicability of this technique in large metro networks with a vertical-cavity-surface-emitting laser-based S-BVT design to target net capacities per channel of 25, 40, and 50 Gb/s. The study reveals that this technology can support most of the paths required for IP offloading after simulation in a semi-synthetic topology modeling a 20-million-inhabitant metropolitan area. Moreover, OSNR margins enable the use of protection paths (secondary disjoint paths) between the target node and the core much longer than primary paths in terms of both the number of intermediate hops and kilometers.European Union H2020 project PASSION, grant no. 780326 (http://www.passion-project.eu/)

    Current Trends in organ preservation solutions for pancreas transplantation; a single.center retrospective study

    Get PDF
    Due to the high vulnerability of the pancreas to ischemia-reperfusion injury, choices regarding preservation solution markedly affect pancreas transplant success. A retrospective single-center analysis of 380 pancreas transplants (2000-2019) was performed to correlate current preservation solutions with transplant outcomes. Early graft failure requiring transplantectomy within 30 days post-transplant occurred in 7.5% for University of Wisconsin (UW) group (n = 267), 10.8% of Celsior (CS) group (n = 83), 28.5% of Histidine-Tryptophan-Ketoglutarate (HTK) group (n = 7), and none for Institut Georges Lopez-1 (IGL-1) group (n = 23). The most common causes of technical failures in this cohort included abdominal hemorrhage (8.4%); graft pancreatitis (3.7%); fluid collections (2.6%); intestinal complications (6.6%); and vascular thrombosis (20.5%). Although IGL-1 solution provided lower surgical complication rates, no significant differences were found between studied groups. Nevertheless, HTK solution was associated with elevated pancreatitis rates. The best graft survival was achieved at 1 year using UW and IGL-1, and at 3 and 5 years using IGL-1 (p = 0.017). There were no significant differences in patient survival after a median follow-up of 118.4 months. In this setting therefore, IGL-1solution appears promising for perfusion and organ preservation in clinical pancreas transplantation, compared to other commonly used solutions. Keywords: pancreas transplantation, graft survival, preservation solution, ischemia-reperfusion, pancreatitis
    corecore