130 research outputs found

    Testing the Elliott-Yafet spin-relaxation mechanism in KC8; a model system of biased graphene

    Get PDF
    Temperature dependent electron spin resonance (ESR) measurements are reported on stage 1 potassium doped graphite, a model system of biased graphene. The ESR linewidth is nearly isotropic and although the g-factor has a sizeable anisotropy, its majority is shown to arise due to macroscopic magnetization. Albeit the homogeneous ESR linewidth shows an unusual, non-linear temperature dependence, it appears to be proportional to the resistivity which is a quadratic function of the temperature. These observations suggests the validity of the Elliott-Yafet relaxation mechanism in KC8 and allows to place KC8 on the empirical Beuneu-Monod plot among ordinary elemental metals.Comment: 6 pages, 4 figures, submitted to Phys. Rev.

    Doped carbon nanotubes as a model system of biased graphene

    Full text link
    Albeit difficult to access experimentally, the density of states (DOS) is a key parameter in solid state systems which governs several important phenomena including transport, magnetism, thermal, and thermoelectric properties. We study DOS in an ensemble of potassium intercalated single-wall carbon nanotubes (SWCNT) and show using electron spin resonance spectroscopy that a sizeable number of electron states are present, which gives rise to a Fermi-liquid behavior in this material. A comparison between theoretical and the experimental DOS indicates that it does not display significant correlation effects, even though the pristine nanotube material shows a Luttinger-liquid behavior. We argue that the carbon nanotube ensemble essentially maps out the whole Brillouin zone of graphene thus it acts as a model system of biased graphene

    CVaR minimization by the SRA algorithm

    Get PDF
    Using the risk measure CV aR in �nancial analysis has become more and more popular recently. In this paper we apply CV aR for portfolio optimization. The problem is formulated as a two-stage stochastic programming model, and the SRA algorithm, a recently developed heuristic algorithm, is applied for minimizing CV aR

    Portfolio selection problems in practice: a comparison between linear and quadratic optimization models

    Full text link
    Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional Value-at-Risk (LACVaR) models, where the assets are limited with the introduction of quantity and cardinality constraints. We propose a completely new approach for solving the LAM model, based on reformulation as a Standard Quadratic Program and on some recent theoretical results. With this approach we obtain optimal solutions both for some well-known financial data sets used by several other authors, and for some unsolved large size portfolio problems. We also test our method on five new data sets involving real-world capital market indices from major stock markets. Our computational experience shows that, rather unexpectedly, it is easier to solve the quadratic LAM model with our algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of the best commercial codes for mixed integer linear programming (MILP) problems. Finally, on the new data sets we have also compared, using out-of-sample analysis, the performance of the portfolios obtained by the Limited Asset models with the performance provided by the unconstrained models and with that of the official capital market indices

    Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-kB-dependent manner

    Get PDF
    Hepatocyte death is an important contributing factor in a number of diseases of the liver. PHD1 confers hypoxic sensitivity upon transcription factors including the hypoxia inducible factor (HIF) and nuclear factor-kappaB (NF-κB). Reduced PHD1 activity is linked to decreased apoptosis. Here, we investigated the underlying mechanism(s) in hepatocytes. Basal NF-κB activity was elevated in PHD1(-/-) hepatocytes compared to wild type controls. ChIP-seq analysis confirmed enhanced binding of NF-κB to chromatin in regions proximal to the promoters of genes involved in the regulation of apoptosis. Inhibition of NF-κB (but not knock-out of HIF-1 or HIF-2) reversed the anti-apoptotic effects of pharmacologic hydroxylase inhibition. We hypothesize that PHD1 inhibition leads to altered expression of NF-κB-dependent genes resulting in reduced apoptosis. This study provides new information relating to the possible mechanism of therapeutic action of hydroxylase inhibitors that has been reported in pre-clinical models of intestinal and hepatic disease.status: publishe

    Properties of the Liquid-Vapor Interface of Acetone-Water Mixtures. A Computer Simulation and ITIM Analysis Study

    Get PDF
    Molecular dynamics simulations of the liquid-vapor interface of acetone-water mixtures of different compositions, covering the entire composition range have been performed on the canonical (N, V, T) ensemble at 298 K, using a model combination that excellently describes the mixing properties of these compounds. The properties of the intrinsic liquid surfaces have been analyzed in terms of the Identification of the Truly Interfacial Molecules (ITIM) method. Thus, the composition, width, roughness, and separation of the subsurface molecular layers, as well as self-association, orientation, and dynamics of exchange with the bulk phase of the surface molecules have been analyzed in detail. Our results show that acetone molecules are strongly adsorbed at the liquid surface, and this adsorption extends to several molecular layers. Like molecules in the surface layer are found to form relatively large lateral self-associates. The effect of the vicinity of the vapor phase on a number of properties of the liquid phase vanishes beyond the first molecular layer, with the second subsurface layer already part of the bulk liquid phase in these respects. The orientational preferences of the surface molecules are governed primarily by the dipole-dipole interaction of the neighboring acetone molecules, and hydrogen bonding interaction of the neighboring acetone-water pairs. (Figure Presented). © 2015 American Chemical Society

    Floating Patches of HCN at the Surface of Their Aqueous Solutions - Can They Make "HCN World" Plausible?

    Get PDF
    The liquid/vapor interface of the aqueous solutions of HCN of different concentrations has been investigated using molecular dynamics simulation and intrinsic surface analysis. Although HCN is fully miscible with water, strong interfacial adsorption of HCN is observed at the surface of its aqueous solutions, and, at the liquid surface, the HCN molecules tend to be located even at the outer edge of the surface layer. It turns out that in dilute systems the HCN concentration can be about an order of magnitude larger in the surface layer than in the bulk liquid phase. Furthermore, HCN molecules show a strong lateral self-association behavior at the liquid surface, forming thus floating HCN patches at the surface of their aqueous solutions. Moreover, HCN molecules are staying, on average, an order of magnitude longer at the liquid surface than water molecules, and this behavior is more pronounced at smaller HCN concentrations. Because of this enhanced dynamical stability, the floating HCN patches can provide excellent spots for polymerization of HCN, which can be the key step in the prebiotic synthesis of partially water-soluble adenine. All of these findings make the hypothesis of "HCN world" more plausible
    corecore