2,395,909 research outputs found

    Pressure anisotropy generation in a magnetized plasma configuration with a shear flow velocity

    Full text link
    The nonlinear evolution of the Kelvin Helmholtz instability in a magnetized plasma with a perpendicular flow close to, or in, the supermagnetosonic regime can produce a significant parallel-to-perpendicular pressure anisotropy. This anisotropy, localized inside the flow shear region, can make the configuration unstable either to the mirror or to the firehose instability and, in general, can affect the development of the KHI. The interface between the solar wind and the Earth's magnetospheric plasma at the magnetospheric equatorial flanks provides a relevant setting for the development of this complex nonlinear dynamics.Comment: 11 pages, 7 figures, submitted to Plasma Phys. Control. Fusio

    Faceted anomalous scaling in the epitaxial growth of semiconductor films

    Full text link
    We apply the generic dynamical scaling theory (GDST) to the surfaces of CdTe polycrystalline films grown in glass substrates. The analysed data were obtained with a stylus profiler with an estimated resolution lateral resolution of lc=0.3μl_c=0.3 \mum. Both real two-point correlation function and power spectrum analyses were done. We found that the GDST applied to the surface power spectra foresees faceted morphology in contrast with the self-affine surface indicated by the local roughness exponent found via the height-height correlation function. This inconsistency is explained in terms of convolution effects resulting from the finite size of the probe tip used to scan the surfaces. High resolution AFM images corroborates the predictions of GDST.Comment: to appear in Europhysics Letter

    Kinetic cascade in solar-wind turbulence: 3D3V hybrid-kinetic simulations with electron inertia

    Full text link
    Understanding the nature of the turbulent fluctuations below the ion gyroradius in solar-wind turbulence is a great challenge. Recent studies have been mostly in favor of kinetic Alfv\'en wave (KAW) type of fluctuations, but other kinds of fluctuations with characteristics typical of magnetosonic, whistler and ion Bernstein modes, could also play a role depending on the plasma parameters. Here we investigate the properties of the sub-proton-scale cascade with high-resolution hybrid-kinetic simulations of freely-decaying turbulence in 3D3V phase space, including electron inertia effects. Two proton plasma beta are explored: the "intermediate" βp=1\beta_p=1 and "low" βp=0.2\beta_p=0.2 regimes, both typically observed in solar wind and corona. The magnetic energy spectum exhibits k8/3k_\perp^{-8/3} and k7/2k_\|^{-7/2} power laws at βp=1\beta_p=1, while they are slightly steeper at βp=0.2\beta_p=0.2. Nevertheless, both regimes develop a spectral anisotropy consistent with kk2/3k_\|\sim k_\perp^{2/3} at kρp>1k_\perp\rho_p>1, and pronounced small-scale intermittency. In this context, we find that the kinetic-scale cascade is dominated by KAW-like fluctuations at βp=1\beta_p=1, whereas the low-β\beta case presents a more complex scenario suggesting the simultaneous presence of different types of fluctuations. In both regimes, however, a non-negligible role of ion Bernstein type of fluctuations at the smallest scales seems to emerge.Comment: 6 pages, 5 figures, final version published in The Astrophysical Journal Letters: Cerri, Servidio & Califano, ApJL 846, L18 (2017

    Coordinate representation for non Hermitian position and momentum operators

    Get PDF
    In this paper we undertake an analysis of the eigenstates of two non self-adjoint operators q^\hat q and p^\hat p similar, in a suitable sense, to the self-adjoint position and momentum operators q^0\hat q_0 and p^0\hat p_0 usually adopted in ordinary quantum mechanics. In particular we discuss conditions for these eigenstates to be {\em biorthogonal distributions}, and we discuss few of their properties. We illustrate our results with two examples, one in which the similarity map between the self-adjoint and the non self-adjoint is bounded, with bounded inverse, and the other in which this is not true. We also briefly propose an alternative strategy to deal with q^\hat q and p^\hat p, based on the so-called {\em quasi *-algebras}.Comment: Accepted in Proceedings of the Royal Society

    Tailored laser pulse chirp to maintain optimum radiation pressure acceleration of ions

    Full text link
    Ion beams generated with ultra-intense lasers-plasma accelerators hold promises to provide compact and affordable beams of relativistic ions. One of the most efficient acceleration setups was demonstrated to be direct acceleration by the laser's radiation pressure. Due to plasma instabilities developing in the ultra-thin foils required for radiation pressure acceleration, however, it is challenging to maintain stable acceleration over long distances. Recent studies demonstrated, on the other hand, that specially tailored laser pulses can shorten the required acceleration distance suppressing the onset of plasma instabilities. Here we extend the concept of specific laser pulse shapes to the experimentally accessible parameter of a frequency chirp. We present a novel analysis of how a laser pulse chirp may be used to drive a foil target constantly maintaining optimal radiation pressure acceleration conditions for in dependence on the target's areal density and the laser's local field strength. Our results indicate that an appropriately frequency chirped laser pulse yields a significantly enhanced acceleration to higher energies and over longer distances suppressing the onset of plasma instabilities.Comment: 7 pages, 4 figure

    Recent studies on flame stabilization of premixed turbulent gases

    Get PDF
    FLAME stabilization is of importance in the practical design of ramjets and afterburners. It has been studied extensively in recent years, particularly with reference to bluff-body flame-holders. In the present survey we describe the investigations relating to flame holding by bluff bodies as well as new techniques (e.g.,. flame holding by the use of reverse jets) which may prove to be of practical importance in new engine configurations. In Section II we consider the flow field downstream of a bluff-body flame-holder which includes the recirculation zone behind the body and a region of flame spreading farther downstream. Explicit reference is made to crucial experiments which illustrate the nature and magnitude of the velocity field, the physical extent, the temperature, and the gas composition of the recirculation zone. Experimental studies and theoretical predictions of the angle of flame spreading, as well as some observations on unstable flow and the onset of blowoff, will be reviewed. The variation of blowoff velocity with flame-holder design, pressure, and mixture composition is considered briefly in Section III both for single and for adjacent bluff bodies. Also included is a summary of results for blowoff velocities obtained with a reverse-jet flame-holder and with wall recesses. Theoretical studies on the mechanism of flame stabilization form the subject of Section IV. We shall indicate the points on which various proposed models agree and disagree with experiment and attempt to formulate a composite description which is consistent with most of the currently available experimental data both for bluff-body and for reverse-jet flameholders

    Charm and longitudinal structure functions with the Kharzeev-Levin-Nardi model

    Full text link
    We use the Kharzeev-Levin-Nardi model of the low xx gluon distributions to fit recent HERA data on charm and longitudinal structure functions. Having checked that this model gives a good description of the data, we use it to predict F2cF^c_2 and FLF_L to be measured in a future electron-ion collider. The results interpolate between those obtained with the de Florian-Sassot and Eskola-Paukkunen-Salgado nuclear gluon distributions. The conclusion of this exercise is that the KLN model, simple as it is, may still be used as an auxiliary tool to make estimates both for heavy ion and electron-ion collisions.Comment: 6 pages, 7 figure
    corecore