31 research outputs found

    Modeling fertility curves in Africa

    Get PDF
    The modeling of fertility patterns is an essential method researchers use to understand world-wide population patterns. Various types of fertility models have been reported in the literature to capture the patterns specific to developed countries. While much effort has been put into reducing fertility rates in Africa, models which describe the fertility patterns have not been adequately described. This article presents a flexible parametric model that can adequately capture the varying patterns of the age-specific fertility curves of African countries. The model has parameters that are interpretable in terms of demographic indices. The performance of this model was compared with other commonly used models and Akaikeā€™s Information Criterion was used for selecting the model with best fit. The presented model was able to reproduce the empirical fertility data of 11 out of 15 countries better than the other models considered.African countries, age-specific fertility rates, Akaikes Information Criterion, complementary error function, cubic/quadratic spline, polynomial model

    Spatial modelling of contribution of individual level risk factors for mortality from Middle East respiratory syndrome coronavirus in the Arabian Peninsula.

    Get PDF
    Middle East respiratory syndrome coronavirus is a contagious respiratory pathogen that is contracted via close contact with an infected subject. Transmission of the pathogen has occurred through animal-to-human contact at first followed by human-to-human contact within families and health care facilities. This study is based on a retrospective analysis of the Middle East respiratory syndrome coronavirus outbreak in the Kingdom of Saudi Arabia between June 2012 and July 2015. A Geoadditive variable model for binary outcomes was applied to account for both individual level risk factors as well spatial variation via a fully Bayesian approach. Out of 959 confirmed cases, 642 (67%) were males and 317 (33%) had died. Three hundred and sixty four (38%) cases occurred in Ar Riyad province, while 325 (34%) cases occurred in Makkah. Individuals with some comorbidity had a significantly higher likelihood of dying from MERS-CoV compared with those who did not suffer comorbidity [Odds ratio (OR) = 2.071; 95% confidence interval (CI): 1.307, 3.263]. Health-care workers were significantly less likely to die from the disease compared with non-health workers [OR = 0.372, 95% CI: 0.151, 0.827]. Patients who had fatal clinical experience and those with clinical and subclinical experiences were equally less likely to die from the disease compared with patients who did not have fatal clinical experience and those without clinical and subclinical experiences respectively. The odds of dying from the disease was found to increase as age increased beyond 25 years and was much higher for individuals with any underlying comorbidities. Interventions to minimize mortality from the Middle East respiratory syndrome coronavirus should particularly focus individuals with comorbidity, non-health-care workers, patients with no clinical fatal experience, and patients without any clinical and subclinical experiences.The authors received no specific funding for this work. All data analyzed in this study were publicly available

    Statistical Approaches to Infectious Diseases Modelling in Developing Countries: A Case of COVID-19

    Get PDF
    Essential skills required for both statistical consulting and collaboration are mostly informal and are rarely taught in the training institutions in developing countries. These critical skills constitute a significant missing gap and a major hindrance to the growth and development of capacity in statistics and data science practice in developing countries. The advent of LISA 2020 initiative is bridging this gap with a fast-growing network of ā€œstat labsā€ spread across higher education institutions in Africa, India, Brazil and other parts of the world. This chapter will highlight how LISA 2020 Stat Labs (and other potential labs outside LISA 2020) engage in building capacity to improve informal statistical skills through training and collaborations. In addition, the chapter will review the activities and programs of the stat labs and the contributions being made to bring data science to bear on real-world problems. The chapter plans to draw out lessons that are unique and common to the different stat labs in the network

    Spatial co-morbidity of childhood acute respiratory infection, diarrhoea and stunting in Nigeria

    Get PDF
    In low- and middle-income countries, children aged below 5 years frequently suffer from disease co-occurrence. This study assessed whether the co-occurrence of acute respiratory infection (ARI), diarrhoea and stunting observed at the child level could also be reflected ecologically. We considered disease data on 69,579 children (0ā€“59 months) from the 2008, 2013, and 2018 Nigeria Demographic and Health Surveys using a hierarchical Bayesian spatial shared component model to separate the state-specific risk of each disease into an underlying disease-overall spatial pattern, common to the three diseases and a disease-specific spatial pattern. We found that ARI and stunting were more concentrated in the north-eastern and southern parts of the country, while diarrhoea was much higher in the northern parts. The disease-general spatial component was greater in the northeastern and southern parts of the country. Identifying and reducing common risk factors to the three conditions could result in improved child health, particularly in the northeast and south of Nigeria.DATA AVAILABILITY STATEMENT : The dataset used in this study are available from the DHS website https://dhsprogram.com/Data/ upon request from the MEASURE DHS program team. Written permission to use the data was obtained from Measure DHS.The South African Medical Research Council.https://www.mdpi.com/journal/ijerphStatistic

    Change in outbreak epicentre and its impact on the importation risks of COVID-19 progression: A modelling study

    Get PDF
    Background The outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) that was first detected in the city of Wuhan, China has now spread to every inhabitable continent, but now the attention has shifted from China to other epicentres. This study explored early assessment of the influence of spatial proximities and travel patterns from Italy on the further spread of SARS-CoV-2 worldwide. Methods Using data on the number of confirmed cases of COVID-19 and air travel data between countries, we applied a stochastic meta-population model to estimate the global spread of COVID-19. Pearson's correlation, semi-variogram, and Moran's Index were used to examine the association and spatial autocorrelation between the number of COVID-19 cases and travel influx (and arrival time) from the source country. Results We found significant negative association between disease arrival time and number of cases imported from Italy (r = āˆ’0.43, p = 0.004) and significant positive association between the number of COVID-19 cases and daily travel influx from Italy (r = 0.39, p = 0.011). Using bivariate Moran's Index analysis, we found evidence of spatial interaction between COVID-19 cases and travel influx (Moran's I = 0.340). Asia-Pacific region is at higher/extreme risk of disease importation from the Chinese epicentre, whereas the rest of Europe, South-America and Africa are more at risk from the Italian epicentre. Conclusion We showed that as the epicentre changes, the dynamics of SARS-CoV-2 spread change to reflect spatial proximities

    Looking Back, Looking Forward: Progress and Prospect for Spatial Demography

    Get PDF
    In 2011 a specialist meeting on the ā€œFuture Directions in Spatial Demographyā€ was held in Santa Barbara, California (Matthews, Goodchild, & Janelle, 2012).1 This specialist meeting was the capstone to a multi-year National Institutes of Health training grant that had supported workshops in advanced spatial analysis methods increasing used by population scientists.2 Early-career scholars who had participated in the training workshops and senior demographers and geographers drawn from across the United States participated in the specialist meeting.3 The application process to attend the 2011 meeting, required that each of the forty-one attendees submit a statement that reviewed challenges and identifed new directions for spatial demography, including gaps in current knowledge regarding innovations in geospatial data, spatial statistical methods, and the integration of data and models to enhance the science of spatial demography in population and health research. Reading again some of the ruminations of these scholars is an interesting exercise in its own right. The level of optimism back in 2011 was high, and especially regarding anticipated changes in computational capacity, leveraging big data (including volunteered geographic information), developments in data systems (including new data high resolution data products and online resources such as multi-scale map interfaces and dashboards), and in methods such as timeā€“space models, agent-based models, microsimulation, and small-area estimation. There were also several challenges identifed including, but not limited to, study designs, data integration, data validation, confdentiality, non-representative data, historic data, defnitions of place, residential selection and mobility as well as two overarching challenges related to the role and contribution of spatial demographers in interdisciplinary population and health research, and many, many comments on training issues. Substantively the attendees research focused on all forms of interaction between people and place (and the reciprocal relations between the people in social, built, and physical environment contexts) covering the gamut of demographic processes from reproductive health to mortality, though with perhaps an overrepresentation of researchers in areas related to population and environment research, racial and residential segregation, and migration.The R25 Training Grant was funded through the Eunice Kennedy Shriver National Institutes of Child Health and Human Development (NICHD 5R-25 HD057002; Principal Investigator: Stephen A. Matthews).

    Looking Back, Looking Forward: Progress and Prospect for Spatial Demography

    Get PDF
    In 2011 a specialist meeting on the ā€œFuture Directions in Spatial Demographyā€ was held in Santa Barbara, California (Matthews, Goodchild, & Janelle, 2012).1 This specialist meeting was the capstone to a multi-year National Institutes of Health training grant that had supported workshops in advanced spatial analysis methods increasing used by population scientists.2 Early-career scholars who had participated in the training workshops and senior demographers and geographers drawn from across the United States participated in the specialist meeting.3 The application process to attend the 2011 meeting, required that each of the forty-one attendees submit a statement that reviewed challenges and identifed new directions for spatial demography, including gaps in current knowledge regarding innovations in geospatial data, spatial statistical methods, and the integration of data and models to enhance the science of spatial demography in population and health research. Reading again some of the ruminations of these scholars is an interesting exercise in its own right. The level of optimism back in 2011 was high, and especially regarding anticipated changes in computational capacity, leveraging big data (including volunteered geographic information), developments in data systems (including new data high resolution data products and online resources such as multi-scale map interfaces and dashboards), and in methods such as timeā€“space models, agent-based models, microsimulation, and small-area estimation. There were also several challenges identifed including, but not limited to, study designs, data integration, data validation, confdentiality, non-representative data, historic data, defnitions of place, residential selection and mobility as well as two overarching challenges related to the role and contribution of spatial demographers in interdisciplinary population and health research, and many, many comments on training issues. Substantively the attendees research focused on all forms of interaction between people and place (and the reciprocal relations between the people in social, built, and physical environment contexts) covering the gamut of demographic processes from reproductive health to mortality, though with perhaps an overrepresentation of researchers in areas related to population and environment research, racial and residential segregation, and migration.The R25 Training Grant was funded through the Eunice Kennedy Shriver National Institutes of Child Health and Human Development (NICHD 5R-25 HD057002; Principal Investigator: Stephen A. Matthews).

    A Bayesian semiparametric multilevel survival modelling of age at first birth in Nigeria

    No full text
    BACKGROUND The age at which childbearing begins influences the total number of children a woman bears throughout her reproductive period, in the absence of any active fertility control. For countries in sub-Saharan Africa where contraceptive prevalence rate is still low, younger ages at first birth tend to increase the number of children a woman will have thereby hindering the process of fertility decline. Research has also shown that early childbearing can endanger the health of the mother and her offspring, which can in turn lead to high child and maternal mortality. OBJECTIVE In this paper, an attempt was made to explore possible trends, geographical variation and determinants of timing of first birth in Nigeria, using the 1999 - 2008 Nigeria Demographic and Health Survey data sets. METHODS A structured additive survival model for continuous time data, an approach that simultaneously estimates the nonlinear effect of metrical covariates, fixed effects, spatial effects and smoothing parameters within a Bayesian context in one step is employed for all estimations. All analyses were carried out using BayesX - a software package for Bayesian modelling techniques. RESULTS Results from this paper reveal that variation in age at first birth in Nigeria is determined more by individual household than by community, and that substantial geographical variations in timing of first birth also exist. COMMENTS These findings can guide policymakers in identifying states or districts that are associated with significant risk of early childbirth, which can in turn be used in designing effective strategies and in decision making

    Early Transmission Dynamics of Novel Coronavirus (COVID-19) in Nigeria

    Get PDF
    On 31 December 2019, the World Health Organization (WHO) was notified of a novel coronavirus disease in China that was later named COVID-19. On 11 March 2020, the outbreak of COVID-19 was declared a pandemic. The first instance of the virus in Nigeria was documented on 27 February 2020. This study provides a preliminary epidemiological analysis of the first 45 days of COVID-19 outbreak in Nigeria. We estimated the early transmissibility via time-varying reproduction number based on the Bayesian method that incorporates uncertainty in the distribution of serial interval (time interval between symptoms onset in an infected individual and the infector), and adjusted for disease importation. By 11 April 2020, 318 confirmed cases and 10 deaths from COVID-19 have occurred in Nigeria. At day 45, the exponential growth rate was 0.07 (95% confidence interval (CI): 0.05–0.10) with a doubling time of 9.84 days (95% CI: 7.28–15.18). Separately for imported cases (travel-related) and local cases, the doubling time was 12.88 days and 2.86 days, respectively. Furthermore, we estimated the reproduction number for each day of the outbreak using a three-weekly window while adjusting for imported cases. The estimated reproduction number was 4.98 (95% CrI: 2.65–8.41) at day 22 (19 March 2020), peaking at 5.61 (95% credible interval (CrI): 3.83–7.88) at day 25 (22 March 2020). The median reproduction number over the study period was 2.71 and the latest value on 11 April 2020, was 1.42 (95% CrI: 1.26–1.58). These 45-day estimates suggested that cases of COVID-19 in Nigeria have been remarkably lower than expected and the preparedness to detect needs to be shifted to stop local transmission
    corecore