7 research outputs found

    Real-Time Analysis of Alarm Pheromone Emission by the Pea Aphid (Acyrthosiphon Pisum) Under Predation

    Get PDF
    Upon attack by predators or parasitoids, aphids emit volatile chemical alarm signals that warn other aphids of a potential risk of predation. Release rate of the major constituent of the alarm pheromone in pea aphids (Acyrthosiphon pisum), (E)-ß-farnesene (EBF), was measured for all nymphal and the adult stage as aphids were attacked individually by lacewing (Chrysoperla carnae) larvae. Volatilization of EBF from aphids under attack was quantified continuously for 60 min at 2-min intervals with a rapid gas chromatography technique (zNose™) to monitor headspace emissions. After an initial burst, EBF volatilization declined exponentially, and detectable amounts were still present after 30 min in most cases. Total emission of EBF averaged 16.33 ± 1.54 ng and ranged from 1.18 to 48.85 ng. Emission was higher in nymphs as compared to adults. No differences between pea aphid life stages were detected for their speed of alarm signal emission in response to lacewing larvae attack. This is the first time that alarm pheromone emission from single aphids has been reported

    Effects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host trees. Forest Ecology and Management

    No full text
    Global climate change has the potential to dramatically alter multiple ecosystem processes, including herbivory. The development rates of both plants and insects are highly sensitive to temperature. Although considerable work has examined the effects of temperature on spring phenologies of plants and insects individually, few studies have examined how anticipated warming will influence their phenological synchrony. We applied elevated temperatures of 1.7 and 3.4 °C in a controlled chamberless outdoor experiment in northeastern Minnesota, USA to examine the relative responses in onset of egg eclosion by forest tent caterpillar (Malacosoma disstria Hübner) and budbreak of two of its major host trees (trembling aspen, Populus tremuloides Michaux, and paper birch, Betula papyrifera Marshall). We superimposed four insect population sources and two overwintering regimes onto these treatments, and computed degree-day models. Timing of egg hatch varied among population source, overwintering location, and spring temperature regime. As expected, the development rates of plants and insects advanced under warmer conditions relative to ambient controls. However, budbreak advanced more than egg hatch. The degree of phenological synchrony between M. disstria and each host plant was differentially altered in response to warming. The interval by which birch budbreak preceded egg hatch nearly doubled from ambient to +1.7 °C. In the case of aspen, the sequence changed from egg hatch preceding, to following, budbreak at +3.4 °C. Additionally, under temperature regimes simulating future conditions, some insect populations currently south of our study sites became more synchronous with the manipulated hosts than did currently coexisting insect populations. These findings reveal how climate warming can alter insect-host plant interactions, through changes in phenological synchrony, possibly driving host shifts among tree species and genotypes. They also suggest how herbivore variability, both among populations and within individual egg masses, may provide opportunities for adaptation, especially in species that are highly mobile and polyphagous

    Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees

    No full text
    As the world’s climate warms, the phenologies of interacting organisms in seasonally cold environments may advance at differing rates, leading to alterations in phenological synchrony that can have important ecological consequences. For temperate and boreal species, the timing of early spring development plays a key role in plant–herbivore interactions and can influence insect performance, outbreak dynamics, and plant damage. We used a field-based, meso-scale free-air forest warming experiment (B4WarmED) to examine the effects of elevated temperature on the phenology and performance of forest tent caterpillar (Malacosoma disstria) in relation to the phenology of two host trees, aspen (Populus tremuloides) and birch (Betula papyrifera). Results of our 2-year study demonstrated that spring phenology advanced for both insects and trees, with experimentally manipulated increases in temperature of 1.7 and 3.4 °C. However, tree phenology advanced more than insect phenology, resulting in altered phenological synchrony. Specifically, we observed a decrease in the time interval between herbivore egg hatch and budbreak of aspen in both years and birch in one year. Moreover, warming decreased larval development time from egg hatch to pupation, but did not affect pupal mass. Larvae developed more quickly on aspen than birch, but pupal mass was not affected by host species. Our study reveals that warming-induced phenological shifts can alter the timing of ecological interactions across trophic levels. These findings illustrate one mechanism by which climate warming could mediate insect herbivore outbreaks, and also highlights the importance of climate change effects on trophic interactions

    Effects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host trees

    No full text
    Global climate change has the potential to dramatically alter multiple ecosystem processes, including herbivory. The development rates of both plants and insects are highly sensitive to temperature. Although considerable work has examined the effects of temperature on spring phenologies of plants and insects individually, few studies have examined how anticipated warming will influence their phenological synchrony. We applied elevated temperatures of 1.7 and 3.4. C in a controlled chamberless outdoor experiment in northeastern Minnesota, USA to examine the relative responses in onset of egg eclosion by forest tent caterpillar (. Malacosoma disstria Hubner) and budbreak of two of its major host trees (trembling aspen, Populus tremuloides Michaux, and paper birch, Betula papyrifera Marshall). We superimposed four insect population sources and two overwintering regimes onto these treatments, and computed degree-day models. Timing of egg hatch varied among population source, overwintering location, and spring temperature regime. As expected, the development rates of plants and insects advanced under warmer conditions relative to ambient controls. However, budbreak advanced more than egg hatch. The degree of phenological synchrony between M. disstria and each host plant was differentially altered in response to warming. The interval by which birch budbreak preceded egg hatch nearly doubled from ambient to +1.7 C. In the case of aspen, the sequence changed from egg hatch preceding, to following, budbreak at +3.4 C. Additionally, under temperature regimes simulating future conditions, some insect populations currently south of our study sites became more synchronous with the manipulated hosts than did currently coexisting insect populations. These findings reveal how climate warming can alter insect-host plant interactions, through changes in phenological synchrony, possibly driving host shifts among tree species and genotypes. They also suggest how herbivore variability, both among populations and within individual egg masses, may provide opportunities for adaptation, especially in species that are highly mobile and polyphagous

    Tomato-aphid-hoverfly: A tritrophic interaction incompatible for pest management

    Get PDF
    peer reviewedTrichome-based tomato resistance offers the potential to reduce pesticide use, but its compatibility with biological control remains poorly understood. We evaluated Episyrphus balteatus De Geer (Diptera, Syrphidae), an efficient aphidophagous predator, as a potential biological control agent of Myzus persicae Sulzer (Hemiptera, Aphididae) on trichome-bearing tomato cultivars. Episyrphus balteatus’ foraging and oviposition behavior, as well as larval mobility and aphid accessibility, were compared between two tomato cultivars (Lycopersicon esculentum Mill. ‘Moneymaker’ and ‘Roma’) and two other crop plants; broad bean (Vicia faba L.) and potato (Solanum tuberosum L.). Hoverfly adults landed and laid more eggs on broad beans than on three species of Solanaceae. Hoverfly larval movement was drastically reduced on tomato, and a high proportion of hoverfly larvae fell from the plant before reaching aphid prey. After quantifying trichome abundance on each of these four plants, we suggest that proprieties of the plant surface, specifically trichomes, are a key factor contributing to reduced efficacy of E. balteatus as a biological agent for aphid control on tomatoes
    corecore