152 research outputs found

    Theory for Phase Transitions in Insulating Vanadium Oxide

    Full text link
    We show that the recently proposed S=2 bond model with orbital degrees of freedom for insulating V2_{2}O3_{3} not only explains the anomalous magnetic ordering, but also other mysteries of the magnetic phase transition. The model contains an additional orbital degree of freedom that exhibits a zero temperature quantum phase transtion in the Ising universality class.Comment: 5 pages, 2 figure

    Orbitally Degenerate Spin-1 Model for Insulating V2O3

    Full text link
    Motivated by recent neutron, X-ray absorption and resonant scattering experiments, we revisit the electronic structure of V2O3. We propose a model in which S=1 V3+ ions are coupled in the vertical V-V pairs forming two-fold orbitally degenerate configurations with S=2. Ferro-orbital ordering of the V-V pairs gives a description which is consistent with all experiments in the antiferromagnetic insulating phase.Comment: 4 pages, including three figure

    Valence band excitations in V_2O_5

    Get PDF
    We present a joint theoretical and experimental investigation of the electronic and optical properties of vanadium pentoxide. Electron energy-loss spectroscopy in transmission was employed to measure the momentum-dependent loss function. This in turn was used to derive the optical conductivity, which is compared to the results of band structure calculations. A good qualitative and quantitative agreement between the theoretical and the experimental optical conductivity was observed. The experimentally observed anisotropy of the optical properties of V_2O_5 could be understood in the light of an analysis of the theoretical data involving the decomposition of the calculated optical conductivity into contributions from transitions into selected energy regions of the conduction band. In addition, based upon a tight binding fit to the band structure, values are given for the effective V3d_xy-O2p hopping terms and are compared to the corresponding values for alpha'-NaV_2O_5.Comment: 6 pages (revtex),6 figures (jpg

    Calculation of PandP_ and T_ odd effects in $"" sup 205_TIF including electron correlation

    Full text link
    A method and codes for two-step correlation calculation of heavy-atom molecules have been developed, employing the generalized relativistic effective core potential and relativistic coupled cluster (RCC) methods at the first step, followed by nonvariational one-center restoration of proper four-component spinors in the heavy cores. Electron correlation is included for the first time in an ab initio calculation of the interaction of the permanent P,T-odd proton electric dipole moment with the internal electromagnetic field in a molecule. The calculation is performed for the ground state of TlF at the experimental equilibrium, R_e=2.0844 A, and at R=2.1 A, with spin-orbit and correlation effects included by RCC. Calculated results with single cluster amplitudes only are in good agreement (3% and 1%) with recent Dirac-Hartree-Fock (DHF) values of the magnetic parameter M; the larger differences occurring between present and DHF volume parameter (X) values, as well as between the two DHF calculations, are explained. Inclusion of electron correlation by GRECP/RCC with single and double excitations has a major effect on the P,T-odd parameters, decreasing M by 17% and X by 22%.Comment: 5 pages, REVTeX4 style Accepted for publication in Phys.Rev.Letter

    High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    Get PDF
    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE

    Finite temperature numerical renormalization group study of the Mott-transition

    Full text link
    Wilson's numerical renormalization group (NRG) method for the calculation of dynamic properties of impurity models is generalized to investigate the effective impurity model of the dynamical mean field theory at finite temperatures. We calculate the spectral function and self-energy for the Hubbard model on a Bethe lattice with infinite coordination number directly on the real frequency axis and investigate the phase diagram for the Mott-Hubbard metal-insulator transition. While for T<T_c approx 0.02W (W: bandwidth) we find hysteresis with first-order transitions both at U_c1 (defining the insulator to metal transition) and at U_c2 (defining the metal to insulator transition), at T>T_c there is a smooth crossover from metallic-like to insulating-like solutions.Comment: 10 pages, 9 eps-figure

    Electronic structure of Co_xTiSe_2 and Cr_xTiSe_2

    Full text link
    The results of investigations of intercalated compounds Cr_xTiSe_2 and Co_xTiSe_2 by X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES) are presented. The data obtained are compared with theoretical results of spin-polarized band structure calculations. A good agreement between theoretical and experimental data for the electronic structure of the investigated materials has been observed. The interplay between the M3d--Ti3d hybridization (M=Cr, Co) and the magnetic moment at the M site is discussed. A 0.9 eV large splitting of the core Cr2p{3/2} level was observed, which reveals a strong exchange magnetic interaction of 3d-2p electrons of Cr. In the case of a strong localization of the Cr3d electrons (for x<0.25), the broadening of the CrL spectra into the region of the states above the nominal Fermi level was observed and attributed to X-ray re-emission. The measured kinetic properties are in good accordance with spectral investigations and band calculation results.Comment: 14 pages, 11 figures, submitted to Phys.Rev.

    Electronic Structure and Phase Transition in V2O3: Importance of 3d Spin-Orbit Interaction and Lattice Distortion

    Full text link
    The 3d electronic structure and phase transition in pure and Cr doped V2O3 are theoretically investigated in relation to the 3d spin-orbit interaction and lattice distortion. A model consisting of the nearest-neighbor V ion pair with full degeneracy of the 3d orbitals is studied within the many-body point of view. It is shown that each V ion with S=1 spin state has a large orbital magnetic moment ∼0.7μB\sim 0.7 \mu_{\rm B} and no orbital ordering occurs in the antiferromagnetic insulating (AFI) phase. The anomalous resonant Bragg reflection found in the AFI phase is attributed to the magnetic ordering. In the AFI and paramagnetic insulating (PI) phases, Jahn-Teller like lattice instability leads to tilting of the V ion pairs from the corundum c-axis and this causes large difference in the orbital occupation between the paramagnetic metal and the insulating phases, which is consistent with linear dichroic V 2p XAS measurements. To understand the AFI to PI transition, a model spin Hamiltonian is also proposed. The transition is found to be simultaneous order-disorder transition of the magnetic moments and tilting directions of the V ion pairs. Softening of elastic constant C44 and abrupt change in short range spin correlations observed at the transition are also explained.Comment: 18 pages, 16 figure

    Observation of narrow baryon resonance decaying into pKs0pK^0_s in pA-interactions at 70GeV/c70 GeV/c with SVD-2 setup

    Full text link
    SVD-2 experiment data have been analyzed to search for an exotic baryon state, the Θ+\Theta^+-baryon, in a pKs0pK^0_s decay mode at 70GeV/c70 GeV/c on IHEP accelerator. The reaction pA→pKs0+XpA \to pK^0_s+X with a limited multiplicity was used in the analysis. The pKs0pK^0_s invariant mass spectrum shows a resonant structure with M=1526±3(stat.)±3(syst.)MeV/c2M=1526\pm3(stat.)\pm 3(syst.) MeV/c^2 and Γ<24MeV/c2\Gamma < 24 MeV/c^2. The statistical significance of this peak was estimated to be of 5.6σ5.6 \sigma. The mass and width of the resonance is compatible with the recently reported Θ+\Theta^+- baryon with positive strangeness which was predicted as an exotic pentaquark (uuddsˉuudd\bar{s}) baryon state. The total cross section for Θ+\Theta^+ production in pN-interactions for XF≥0X_F\ge 0 was estimated to be (30÷120)μb(30\div120) \mu b and no essential deviation from A-dependence for inelastic events (∼A0.7)(\sim A^{0.7}) was found.Comment: 8 pages, 7 figures, To be submitted to Yadernaya Fizika. v3-v5 - Some references added, minor typos correcte

    The Kondo Resonance in Electron Spectroscopy

    Full text link
    The Kondo resonance is the spectral manifestation of the Kondo properties of the impurity Anderson model, and also plays a central role in the dynamical mean-field theory (DMFT) for correlated electron lattice systems. This article presents an overview of electron spectroscopy studies of the resonance for the 4f electrons of cerium compounds, and for the 3d electrons of V_2O_3, including beginning efforts at using angle resolved photoemission to determine the k-dependence of the resonance. The overview includes the comparison and analysis of spectroscopy data with theoretical spectra as calculated for the impurity model and as obtained by DMFT, and the Kondo volume collapse calculation of the cerium alpha-gamma phase transition boundary, with its spectroscopic underpinnings.Comment: 32 pages, 11 figures, 151 references; paper for special issue of J. Phys. Soc. Jpn. on "Kondo Effect--40 Years after the Discovery
    • …
    corecore