14 research outputs found
Customary Deprivation: Perceptions of Legatee in Igbo land and Female Property Crimes amongst Enugu Urban Inhabitants
This study aims to garner perceptions of Enugu inhabitants on the customary practice of property transfer to inheritors and its nexus to female property crimes (FPCs). Inheritance is an age-old practice which tends to favour male folks. Women have often been relegated to the kitchen. This practice is embedded in most African cultures where the birth of a male is valued over the birth of a female child. Denial of female rights of inheritance, denial of ownership of landed property, and female marginalization in almost all social institutions seem to stem from patriarchy which in turn tend to predispose women to property crimes. This study anchored on Relative Deprivation theory. Mixed method approach was adopted. Sampling of participant was based on multi-stage sampling procedure and purposive sampling. The sample size is 1015 for the quantitative part of the study and nine key informants for the qualitative aspect. This study found that the customary practice of legatee in Igbo land is embedded in patriarchy and this holds adverse economic effects for women, culminating in FPCs which involve women of youthful age who are mostly in full blown exposure of the existing privileges and cover offered to women in patriarchal societies especially when married. This study concludes that patriarchy understood as domination of vital social and political positions by men and exclusion of women from inheriting family lands and properties is implicit to FPCs
Cybercrime: Victims’ Shock Absorption Mechanisms
The development of technology creates opportunities for businesses, seamless communications and leisure activities to thrive. However, it also propels crime. In Nigeria, cyber threat continues to evolve rapidly with rising number of victims on daily bases. This necessitated the present study that examines the shock absorption mechanism of the cybercrime victims in Nigeria. The data for this study came from a variety of sources, including books, articles, essays, tabloids, and journal publications; a content analysis approach was used to evaluate the data and present using certain words, themes, concepts, or codifications. The study found that the peculiarity of cybercrime lies in the fact that the victims willingly land themselves into it without being forced to do so. It starts with what seem to be a friendly conversation and exchange of correspondences and pleasantries which turns into a scamming spree. To this end, victims are left battered and shattered, and could act irrationally against own-self before state actors set out to track the offender(s). Thus, victims of cybercrime could absorb shock by spending quality time with significant others. This enables them feel the love and moral supports from close associates, other than wallow in loneliness and isolation which can breed unpleasant stimuli
Utilization of nanochitosan in the sterilization of ponds and water treatment for aquaculture
Water pollution constitutes the leading cause of infant mortality,
neonatal deformities, and shrinkage of man’s average life expectancy.
Pollutants come from point and nonpoint sources; and water pollution
arises from the discharge of wastewater containing undesirable
impurities used for domestic, agricultural, and industrial purposes.
More so, high nutrient and wastewater runoffs from fish production
systems contribute to the fouling and eutrophication of recipient water
bodies. Hence, aquaculture which is inextricably linked to the natural
environment is challenged by the dearth of appropriate water quantity
and quality, militating against fish, and fishery production.
Nanochitosans as polysaccharides produced by the alkalescent
deacetylation of chitin, comprise a series of 2-deoxy-2 (acetylamino)
glucose linked by ß-(1-4) glycosidic linkages. They are naturally
formed from the deacetylation of shellfish shells and exoskeletons of
aquatic arthropods and crustaceans. The unique attributes of chitin
confer a wide range of biotechnological applications on the polymer,
observed in flocculation as a wastewater treatment and purification
route initiated by chitosan. This chapter highlights nanochitosan
properties of aquaculture relevance; and elucidates the purification
potentials of nanochitosan, compared to inorganic coagulants and
organic polymeric flocculants. Effects of chitosan on contaminants and
microorganisms, as well as applications in fish pathogens detection,
fish disease diagnosis, and control are discussed
Utilization of nanochitosan for enzyme immobilization of aquatic and animal-based food packages
Studies have identified the properties of enzymes, functionalized molecules, and compounds in food industry applications as edible coatings and encapsulations, that assure prolonged food quality and standards. These molecules present benefits of longer shelf-life by delayed deterioration and inhibition of the proliferation of spoilage and mycotoxigenic microorganisms. However, challenges of reduced nutrient levels, miniaturized size, and low chemical stability remain concerning. Chitosan polymers naturally formed from the deacetylation of shellfish shells and exoskeletons of aquatic arthropods and crustaceans offer improved benefits when functionalized into nanoparticles as nanochitosans. These polysaccharides produced by the alkalescent deacetylation of chitin, comprise a series of 2-deoxy-2 (acetylamino) glucose linked by ß-(1-4) glycosidic linkages. This chapter considers the health impacts and
Nanochitosan derived from marine bacteria
Nanochitosans are polysaccharides produced by the alkalescent deacetylation of chitin and comprise
a series of 2‐deoxy‐2 (acetylamino) glucose linked by ß‐(1‐4) glycosidic linkages. These are naturally
formed from the deacetylation of shellfish shells and the exoskeleton of aquatic arthropods and
crustaceans. Reports of chitosan production from unicellular marine bacteria inhabiting the sea, and
possessing distinct animal‐ and plant‐like characteristics abound. This capacity to synthesize chitosan
from chitin arises from response to stress under extreme environmental conditions, as a means of
survival. Consequently, the microencapsulation of these nanocarriers results in new and improved
chitosan nanoparticles, nanochitosan. This nontoxic bioactive material which can serve as an
antibacterial agent, gene delivery vector as well as carrier for protein and drug release as compared
with chitosan, is limited by its nonspecific molecular weight and higher composition of deacetylated
chitin. This chapter highlights the biology and diversity of nanochitosan‐producing marine bacteria,
including the factors influencing their activities, survival, and distribution. More so, the applications
of marine bacterial nanochitosans in transfection and gene delivery; wound healing and drug
delivery; feed supplement development and antimicrobial activity are discussed
Next Generation Nanochitosan Applications in Animal Husbandry, Aquaculture and Food Conservation
Studies have identified the properties of enzymes, functionalized
molecules, and compounds in food industry applications as edible
coatings and encapsulations, that assure prolonged food quality and
standards. These molecules present benefits of longer shelf-life by
delayed deterioration and inhibition of the proliferation of spoilage and
mycotoxigenic microorganisms. However, challenges of reduced
nutrient levels, miniaturized size, and low chemical stability remain
concerning. Chitosan polymers naturally formed from the
deacetylation of shellfish shells and exoskeletons of aquatic
arthropods and crustaceans offer improved benefits when
functionalized into nanoparticles as nanochitosans. These
polysaccharides produced by the alkalescent deacetylation of chitin,
comprise a series of 2-deoxy-2 (acetylamino) glucose linked by ß-(1-
4) glycosidic linkages. This chapter considers the health impacts and
microbiological health hazards associated with animal feeds quality
and the enzyme immobilization potentials of nanochitosans in animalbased
food and feed packages. Thereafter, nanochitosan properties
and benefits are compared against traditional preservatives from
microbes and plants; with highlights on current challenges in the
application of nanochitosan for enzyme immobilization
Chapter 21 - Utilization of nanochitosan in the sterilization of ponds and water treatment for aquaculture
Water pollution constitutes the leading cause of infant mortality,
neonatal deformities, and shrinkage of man’s average life expectancy.
Pollutants come from point and nonpoint sources; and water pollution
arises from the discharge of wastewater containing undesirable
impurities used for domestic, agricultural, and industrial purposes.
More so, high nutrient and wastewater runoffs from fish production
systems contribute to the fouling and eutrophication of recipient water
bodies. Hence, aquaculture which is inextricably linked to the natural
environment is challenged by the dearth of appropriate water quantity
and quality, militating against fish, and fishery production.
Nanochitosans as polysaccharides produced by the alkalescent
deacetylation of chitin, comprise a series of 2-deoxy-2 (acetylamino)
glucose linked by ß-(1-4) glycosidic linkages. They are naturally
formed from the deacetylation of shellfish shells and exoskeletons of
aquatic arthropods and crustaceans. The unique attributes of chitin
confer a wide range of biotechnological applications on the polymer,
observed in flocculation as a wastewater treatment and purification
route initiated by chitosan. This chapter highlights nanochitosan properties of aquaculture relevance; and elucidates the purification
potentials of nanochitosan, compared to inorganic coagulants and
organic polymeric flocculants. Effects of chitosan on contaminants and
microorganisms, as well as applications in fish pathogens detection,
fish disease diagnosis, and control are discussed
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic