7 research outputs found
Liver Disease Recognition: A Discrete Hidden Markov Model Approach
The liver alongside the heart and the brain is the largest and the most vital organ within the human body whose
absence leads to certain death. In addition, diagnosis of liver diseases takes a long time and requires sufficient
expertise of physicians. To this end, statistical methods as automatic prediction systems can help specialists to
diagnose liver diseases quickly and accurately. The Discrete Hidden Markov Model (DHMM) is an intelligent and
a strong statistical model used to predict the types of liver diseases in patients in this study. The data in this crosssectional
study included information elicited from the records of 1143 patients with 5 different types of liver
diseases including cirrhosis of the liver, liver cancer, acute hepatitis, chronic hepatitis, and fatty liver disease
admitted to Afzalipour Hospital in the city of Kerman in the time period of 2006-2013. At first, the type of
diseases for each patient was identified; however, it was assumed that the type of diseases is unknown and there
were attempts to diagnose the type of the disease through the DHMM to examine its accuracy. Therefore, the
DHMM was fitted to the data and its performance was evaluated by using the parameters of accuracy, sensitivity,
and specificity. Such parameters of the model were separately calculated for the diagnosis of liver diseases. The
highest levels of accuracy, sensitivity, and specificity were associated with the diagnosis of cirrhosis of the liver
and equal to 0.77, 0.82, 0.96, respectively; and the lowest levels were related to the diagnosis of fatty liver disease
with an accuracy level of 0.65 and a sensitivity level of 0.69. As well, the specificity level in the diagnosis of fatty
liver disease was 0.94.
The results of this study indicated the potential ability of the DHMM; thus, the use of this model in terms of
diagnosing liver diseases was strongly recommended
Recommended from our members
Global investments in pandemic preparedness and COVID-19: development assistance and domestic spending on health between 1990 and 2026
Background
The COVID-19 pandemic highlighted gaps in health surveillance systems, disease prevention, and treatment globally. Among the many factors that might have led to these gaps is the issue of the financing of national health systems, especially in low-income and middle-income countries (LMICs), as well as a robust global system for pandemic preparedness. We aimed to provide a comparative assessment of global health spending at the onset of the pandemic; characterise the amount of development assistance for pandemic preparedness and response disbursed in the first 2 years of the COVID-19 pandemic; and examine expectations for future health spending and put into context the expected need for investment in pandemic preparedness.
Methods
In this analysis of global health spending between 1990 and 2021, and prediction from 2021 to 2026, we estimated four sources of health spending: development assistance for health (DAH), government spending, out-of-pocket spending, and prepaid private spending across 204 countries and territories. We used the Organisation for Economic Co-operation and Development (OECD)'s Creditor Reporting System (CRS) and the WHO Global Health Expenditure Database (GHED) to estimate spending. We estimated development assistance for general health, COVID-19 response, and pandemic preparedness and response using a keyword search. Health spending estimates were combined with estimates of resources needed for pandemic prevention and preparedness to analyse future health spending patterns, relative to need.
Findings
In 2019, at the onset of the COVID-19 pandemic, US7·3 trillion (95% UI 7·2–7·4) in 2019; 293·7 times the 43·1 billion in development assistance was provided to maintain or improve health. The pandemic led to an unprecedented increase in development assistance targeted towards health; in 2020 and 2021, 37·8 billion was provided for the health-related COVID-19 response. Although the support for pandemic preparedness is 12·2% of the recommended target by the High-Level Independent Panel (HLIP), the support provided for the health-related COVID-19 response is 252·2% of the recommended target. Additionally, projected spending estimates suggest that between 2022 and 2026, governments in 17 (95% UI 11–21) of the 137 LMICs will observe an increase in national government health spending equivalent to an addition of 1% of GDP, as recommended by the HLIP.
Interpretation
There was an unprecedented scale-up in DAH in 2020 and 2021. We have a unique opportunity at this time to sustain funding for crucial global health functions, including pandemic preparedness. However, historical patterns of underfunding of pandemic preparedness suggest that deliberate effort must be made to ensure funding is maintained
Liver Disease Recognition: A Discrete Hidden Markov Model Approach
The liver alongside the heart and the brain is the largest and the most vital organ
within the human body whose absence leads to certain death. In addition, diagnosis
of liver diseases takes a long time and requires sufficient expertise of physicians. To
this end, statistical methods as automatic prediction systems can help specialists to
diagnose liver diseases quickly and accurately. The discrete Hidden Markov Model
(HMM) is an intelligent and a strong statistical model used to predict the types of
liver diseases in patients in this study. The data in this cross-sectional study
included information elicited from the records of Û±Û±Û´Û³ patients with Ûµ different types
of liver diseases including cirrhosis of the liver, liver cancer, acute hepatitis, chronic
hepatitis, and fatty liver disease admitted to Afzalipour Hospital in the city of
Û²Û°Û±Û³. At first, the type of diseases for each patient - Kerman in the time period of Û²Û°Û°Û¶
was identified; however, it was assumed that the type of diseases is unknown and
there were attempts to diagnose the type of the disease through the HMM to
examine its accuracy. Therefore, the HMM was fitted to the data and its
performance was evaluated by using the parameters of accuracy, sensitivity, and
specificity. Such parameters of the model were separately calculated for the
diagnosis of liver diseases. The highest levels of accuracy, sensitivity, and
specificity were associated with the diagnosis of cirrhosis of the liver and equal to
Û°.Û¹Û¶, respectively; and the lowest levels were related to the diagnosis of , Û°.Û¸Û² , Û°.Û·Û·
fatty liver disease with an accuracy level of Û°.Û¶Ûµ and a sensitivity level of Û°.Û¶Û¹. As
well, the specificity level in the diagnosis of fatty liver disease was Û°.Û¹Û´.The results
of this study indicated the potential ability of the HMM; thus, the use of this model
in terms of diagnosing liver diseases was strongly recommended
Injury burden in individuals aged 50 years or older in the Eastern Mediterranean region, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019
Background: Injury poses a major threat to health and longevity in adults aged 50 years or older. The increased life expectancy in the Eastern Mediterranean region warrants a further understanding of the ageing population's inevitable changing health demands and challenges. We aimed to examine injury-related morbidity and mortality among adults aged 50 years or older in 22 Eastern Mediterranean countries. Methods: Drawing on data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we categorised the population into adults aged 50–69 years and adults aged 70 years and older. We examined estimates for transport injuries, self-harm injuries, and unintentional injuries for both age groups, with sex differences reported, and analysed the percentage changes from 1990 to 2019. We reported injury-related mortality rates and disability-adjusted life-years (DALYs). The Socio-demographic Index (SDI) and the Healthcare Access and Quality (HAQ) Index were used to better understand the association of socioeconomic factors and health-care system performance, respectively, with injuries and health status in older people. Healthy life expectancy (HALE) was compared with injury-related deaths and DALYs and to the SDI and HAQ Index to understand the effect of injuries on healthy ageing. Finally, risk factors for injury deaths between 1990 and 2019 were assessed. 95% uncertainty intervals (UIs) are given for all estimates. Findings: Estimated injury mortality rates in the Eastern Mediterranean region exceeded the global rates in 2019, with higher injury mortality rates in males than in females for both age groups. Transport injuries were the leading cause of deaths in adults aged 50–69 years (43·0 [95% UI 31·0–51·8] per 100 000 population) and in adults aged 70 years or older (66·2 [52·5–75·5] per 100 000 population), closely followed by conflict and terrorism for both age groups (10·2 [9·3–11·3] deaths per 100 000 population for 50–69 years and 45·7 [41·5–50·3] deaths per 100 000 population for ≥70 years). The highest annual percentage change in mortality rates due to injury was observed in Afghanistan among people aged 70 years or older (400·4% increase; mortality rate 1109·7 [1017·7–1214·7] per 100 000 population). The leading cause of DALYs was transport injuries for people aged 50–69 years (1798·8 [1394·1–2116·0] per 100 000 population) and unintentional injuries for those aged 70 years or older (2013·2 [1682·2–2408·7] per 100 000 population). The estimates for HALE at 50 years and at 70 years in the Eastern Mediterranean region were lower than global estimates. Eastern Mediterranean countries with the lowest SDIs and HAQ Index values had high prevalence of injury DALYs and ranked the lowest for HALE at 50 years of age and HALE at 70 years. The leading injury mortality risk factors were occupational exposure in people aged 50–69 years and low bone mineral density in those aged 70 years or older. Interpretation: Injuries still pose a real threat to people aged 50 years or older living in the Eastern Mediterranean region, mainly due to transport and violence-related injuries. Dedicated efforts should be implemented to devise injury prevention strategies that are appropriate for older adults and cost-effective injury programmes tailored to the needs and resources of local health-care systems, and to curtail injury-associated risk and promote healthy ageing. Funding: Bill & Melinda Gates Foundation
Recommended from our members
Age–sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019: results from the Global Burden of Disease Study 2019
Summary
Background
The global burden of lower respiratory infections (LRIs) and corresponding risk factors in children older than 5 years and adults has not been studied as comprehensively as it has been in children younger than 5 years. We assessed the burden and trends of LRIs and risk factors across all age groups by sex, for 204 countries and territories.
Methods
In this analysis of data for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we used clinician-diagnosed pneumonia or bronchiolitis as our case definition for LRIs. We included International Classification of Diseases 9th edition codes 079.6, 466–469, 470.0, 480–482.8, 483.0–483.9, 484.1–484.2, 484.6–484.7, and 487–489 and International Classification of Diseases 10th edition codes A48.1, A70, B97.4–B97.6, J09–J15.8, J16–J16.9, J20–J21.9, J91.0, P23.0–P23.4, and U04–U04.9. We used the Cause of Death Ensemble modelling strategy to analyse 23 109 site-years of vital registration data, 825 site-years of sample vital registration data, 1766 site-years of verbal autopsy data, and 681 site-years of mortality surveillance data. We used DisMod-MR 2.1, a Bayesian meta-regression tool, to analyse age–sex-specific incidence and prevalence data identified via systematic reviews of the literature, population-based survey data, and claims and inpatient data. Additionally, we estimated age–sex-specific LRI mortality that is attributable to the independent effects of 14 risk factors.
Findings
Globally, in 2019, we estimated that there were 257 million (95% uncertainty interval [UI] 240–275) LRI incident episodes in males and 232 million (217–248) in females. In the same year, LRIs accounted for 1·30 million (95% UI 1·18–1·42) male deaths and 1·20 million (1·07–1·33) female deaths. Age-standardised incidence and mortality rates were 1·17 times (95% UI 1·16–1·18) and 1·31 times (95% UI 1·23–1·41) greater in males than in females in 2019. Between 1990 and 2019, LRI incidence and mortality rates declined at different rates across age groups and an increase in LRI episodes and deaths was estimated among all adult age groups, with males aged 70 years and older having the highest increase in LRI episodes (126·0% [95% UI 121·4–131·1]) and deaths (100·0% [83·4–115·9]). During the same period, LRI episodes and deaths in children younger than 15 years were estimated to have decreased, and the greatest decline was observed for LRI deaths in males younger than 5 years (–70·7% [–77·2 to –61·8]). The leading risk factors for LRI mortality varied across age groups and sex. More than half of global LRI deaths in children younger than 5 years were attributable to child wasting (population attributable fraction [PAF] 53·0% [95% UI 37·7–61·8] in males and 56·4% [40·7–65·1] in females), and more than a quarter of LRI deaths among those aged 5–14 years were attributable to household air pollution (PAF 26·0% [95% UI 16·6–35·5] for males and PAF 25·8% [16·3–35·4] for females). PAFs of male LRI deaths attributed to smoking were 20·4% (95% UI 15·4–25·2) in those aged 15–49 years, 30·5% (24·1–36·9) in those aged 50–69 years, and 21·9% (16·8–27·3) in those aged 70 years and older. PAFs of female LRI deaths attributed to household air pollution were 21·1% (95% UI 14·5–27·9) in those aged 15–49 years and 18·2% (12·5–24·5) in those aged 50–69 years. For females aged 70 years and older, the leading risk factor, ambient particulate matter, was responsible for 11·7% (95% UI 8·2–15·8) of LRI deaths.
Interpretation
The patterns and progress in reducing the burden of LRIs and key risk factors for mortality varied across age groups and sexes. The progress seen in children younger than 5 years was clearly a result of targeted interventions, such as vaccination and reduction of exposure to risk factors. Similar interventions for other age groups could contribute to the achievement of multiple Sustainable Development Goals targets, including promoting wellbeing at all ages and reducing health inequalities. Interventions, including addressing risk factors such as child wasting, smoking, ambient particulate matter pollution, and household air pollution, would prevent deaths and reduce health disparities