9 research outputs found

    Simultaneous Septal Perforation and Deviation Repair with a Chondromucosal Transposition Flap

    No full text
    Nasal septal perforations can cause issues of epistaxis, whistling, crusting, saddle deformity, and obstruction, which motivate patients to seek surgical repair. Numerous methods of septal perforation repair have been described, with surgical success rates ranging from 52% to 100%, but few studies address situations with concomitant septal deviation. In treating patients with septal perforation and deviation, both issues should be addressed for optimal outcomes. While routine septoplasty involves the removal of septal cartilage, septal perforation repair involves the addition of interposition grafts. The composite chondromucosal septal rotation flap harmoniously combines these seemingly conflicting goals as an effective and efficient technique for septal perforation repair. We present 3 patients successfully treated for their septal perforation and septal deviation concurrently with this technique

    19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells.

    No full text
    Current diagnosis of organ rejection following transplantation relies on tissue biopsy, which is not ideal due to sampling limitations and risks associated with the invasive procedure.We have previously shown that cellular magnetic resonance imaging (MRI) of iron-oxide labeled immune-cell infiltration can provide a noninvasive measure of rejection status by detecting areas of hypointensity on T 2*-weighted images. In this study, we tested the feasibility of using a fluorine-based cellular tracer agent to detect macrophage accumulation in rodent models of acute allograft rejection by fluorine-19 ((19) F) MRI and magnetic resonance spectroscopy. This study used two rat models of acute rejection, including abdominal heterotopic cardiac transplant and orthotopic kidney transplant models. Following in vivo labeling of monocytes and macrophages with a commercially available agent containing perfluoro-15-crown-5-ether, we observed (19) F-signal intensity in the organs experiencing rejection by (19) F MRI, and conventional (1) H MRI was used for anatomical context. Immunofluorescence and histology confirmed macrophage labeling. These results are consistent with our previous studies and show the complementary nature of the two cellular imaging techniques. With no background signal, (19) F MRI/magnetic resonance spectroscopy can provide unambiguous detection of fluorine labeled cells, and may be a useful technique for detecting and quantifying rejection grade in patients.</p

    Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles.

    No full text
    BACKGROUND: Long-term survival of heart transplants is hampered by chronic rejection (CR). Studies indicate the involvement of host macrophages in the development of CR; however, the precise role of these cells in CR is unclear. Thus, it is important to develop noninvasive techniques to serially monitor the movement and distribution of recipient macrophages in chronic cardiac allograft rejection in vivo. METHODS AND RESULTS: We have employed a rat heterotopic working-heart CR model for a magnetic resonance imaging experiment. Twenty-one allograft (PVG.1U-->PVG.R8) and 9 isograft (PVG.R8-->PVG.R8) transplantations were performed. Recipient macrophages are labeled via intravenous injection of micron-sized paramagnetic iron oxide particles (0.9 microm in diameter) at a dose of 4.5 mg Fe per rat 1 day before transplantation. Serial in vivo magnetic resonance images were acquired for up to 16 weeks. The migration of labeled recipient cells in our CR model, in which cardiac CR is evident at 3 weeks and most extensive by 16 weeks after transplantation, can be assessed with the use of in vivo magnetic resonance imaging for >100 days after a single micron-sized paramagnetic iron oxide injection. The location and distribution of labeled recipient cells were confirmed with magnetic resonance microscopy and histology. CONCLUSIONS: This approach may improve our understanding of the immune cells involved in CR and the management of heart transplantation. Moreover, this study demonstrates the feasibility of noninvasively observing individual targeted cells over long time periods by serial in vivo magnetic resonance imaging.</p

    Magnetic resonance imaging investigation of macrophages in acute cardiac allograft rejection after heart transplantation.

    No full text
    <p>BACKGROUND: Current immunosuppressive therapy after heart transplantation either generally suppresses the recipient's entire immune system or is mainly targeting T-lymphocytes. Monocytes/macrophages are recognized as a hallmark of acute allograft rejection, but the roles that they play are not well characterized in vivo, because the tools for accessing in situ macrophage infiltration are lacking. In this study, we used MRI to investigate the role of macrophages in acute heart allograft rejection by cellular and functional MRI with selectively depleted systemic macrophages without affecting other leukocyte population, as well as to explore the possibility that macrophages could be an alternative therapeutic target.</p> <p>METHODS AND RESULTS: A rodent heterotopic working heart-lung transplantation model was used for studying acute allograft rejection. Systemic macrophages were selectively depleted by treating recipient animals with clodronate-liposomes. Macrophage infiltration in the graft hearts was monitored by cellular MRI with in vivo ultrasmall superparamagnetic iron oxide particles labeling. Graft heart function was evaluated by tagging MRI followed by strain analysis. Clodronate-liposome treatment depletes circulating monocytes/macrophages in transplant recipients, and both cellular MRI and pathological examinations indicate a significant reduction in macrophage accumulation in the rejecting allograft hearts. In clodronate-liposome-treated group, allograft hearts exhibited preserved tissue integrity, partially reversed functional deterioration, and prolonged graft survival, compared with untreated controls.</p> <p>CONCLUSIONS: Cardiac cellular and functional MRI is a powerful tool to explore the roles of targeted immune cells in vivo. Our results indicate that macrophages are essential in acute cardiac allograft rejection, and selective depletion of macrophages with clodronate-liposomes protects hearts against allograft rejection, suggesting a potential therapeutic avenue. Our findings show that there is a finite risk of forming an intraventricular mass, presumably from the cellular debris or lipid material. Further optimization of the dosing protocol is necessary before clinical applications.</p

    Evaluating a New Class of AKT/mTOR Activators for HIV Latency Reversing Activity Ex Vivo and In Vivo.

    No full text
    An ability to activate latent HIV-1 expression could benefit many HIV cure strategies, but the first generation of latency reversing agents (LRAs) has proven disappointing. We evaluated AKT/mTOR activators as a potential new class of LRAs. Two glycogen synthase kinase-3 inhibitors (GSK-3i's), SB-216763 and tideglusib (the latter already in phase II clinical trials) that activate AKT/mTOR signaling were tested. These GSK-3i's reactivated latent HIV-1 present in blood samples from aviremic individuals on antiretroviral therapy (ART) in the absence of T cell activation, release of inflammatory cytokines, cell toxicity, or impaired effector function of cytotoxic T lymphocytes or NK cells. However, when administered in vivo to SIV-infected rhesus macaques on suppressive ART, tideglusib exhibited poor pharmacodynamic properties and resulted in no clear evidence of significant SIV latency reversal. Whether alternative pharmacological formulations or combinations of this drug with other classes of LRAs will lead to an effective in vivo latency-reversing strategy remains to be determined.IMPORTANCE If combined with immune therapeutics, latency reversing agents (LRAs) have the potential to reduce the size of the reservoir sufficiently that an engineered immune response can control the virus in the absence of antiretroviral therapy. We have identified a new class of LRAs that do not induce T-cell activation and that are able to potentiate, rather than inhibit, CD8+ T and NK cell cytotoxic effector functions. This new class of LRAs corresponds to inhibitors of glycogen synthase kinase-3. In this work, we have also studied the effects of one member of this drug class, tideglusib, in SIV-infected rhesus monkeys. When tested in vivo, however, tideglusib showed unfavorable pharmacokinetic properties, which resulted in lack of SIV latency reversal. The disconnect between our ex vivo and in vivo results highlights the importance of developing next generation LRAs with pharmacological properties that allow systemic drug delivery in relevant anatomical compartments harboring latent reservoirs
    corecore