1,163 research outputs found

    Fall-Off from Extrapolated Values of All Chemical Reactions at Very High Temperatures

    Full text link

    Cooperative Jahn-Teller Distortion in PrO2

    Full text link
    We report neutron diffraction data on single crystal PrO2 which reveal a cooperative Jahn-Teller distortion at TD = 120 +/- 2 K. Below this temperature an internal distortion of the oxygen sublattice causes the unit cell of the crystallographic structure to become doubled along one crystal axis. We discuss several possible models for this structure. The antiferromagnetic structure below TN = 13.5 K is found to consist of two components, one of which shares the same doubled unit cell as the distorted crystallographic structure. We also present measurements of the magnetic susceptibility, the specific heat capacity and the electrical conductivity of PrO2. The susceptibility data show an anomaly at a temperature close to TD. From the specific heat capacity data we deduce that the ground state is doubly degenerate, consistent with a distortion of the cubic local symmetry. We discuss possible mechanisms for this. The conductivity shows an activated behaviour with an activation energy Ea = 0.262 +/- 0.003 eV.Comment: 12 pages, 14 figures, 2 tables. Additional suggested structure in v

    On the equation of state of a dense columnar liquid crystal

    Full text link
    An accurate description of a columnar liquid crystal of hard disks at high packing fractions is presented using an improved free-volume theory. It is shown that the orientational entropy of the disks in the one-dimensional fluid direction leads to a different high-density scaling pressure compared to the prediction from traditional cell theory. Excellent quantitative agreement is found with recent Monte-Carlo simulation results for various thermodynamic and structural properties of the columnar state.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Raman and Infra-red properties and layer dependence of the phonon dispersions in multi-layered graphene

    Full text link
    The symmetry group analysis is applied to classify the phonon modes of NN-stacked graphene layers (NSGL's) with AB- and AA-stacking, particularly their infra-red and Raman properties. The dispersions of various phonon modes are calculated in a multi-layer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the inter-layer interactions in NSGL's. The experimentally reported red shift phenomena in the layer number dependence of the intra-layer optical C-C stretching mode frequencies are interpreted. An interesting low frequency inter-layer optical mode is revealed to be Raman or Infra-red active in even or odd NSGL's respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.Comment: enlarged versio

    Perceived Benefits of Technology Enhanced Language Learning in Beginning Language Classes

    Get PDF
    This paper examines the perceptions of benefit of Technology EnhancedLanguage Learning (TELL) on students’ language learning, comfort &enjoyment, and increased confidence using technology at a large SouthernCalifornia University during one university term. Through a surveyadministered to 345 beginning language students, 11 tutors and 12instructors, and through selective interviews and classroom observations,several questions were examined: 1.) Perceived confidence, benefits, andcomfort/enjoyment with TELL for instructors, tutors, and students at thebeginning and end of the semester; 2.) Students’ perceived impact ofTELL between pre and post survey measures on second language skills,learning culture, student motivation to learn a language, and preparingstudents for class tests and quizzes; 3.) Whether or not target languageorthography, exposure to TELL, student gender, and instructors’ ortutors’ previous confidence in using TELL, impacted perception of benefitby students; 4.) Positive and negative aspects of incorporating a TELLcomponent in the language classroom for instructors and tutors. Theresults showed that incorporating TELL in a new, but limited, way in allbeginning level classes at one university was a positive experience formany participants, especially in the areas of comfort/enjoyment, andincreased confidence in using technology. However, unless tasks wereclearly tied to learning objectives, students did not recognize theirinstructional value

    The confined hydrogen atom with a moving nucleus

    Full text link
    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first--order perturbation theory and by a more accurate variational approach. We show that it is greater than the one for the case in which the nucleus is clamped at the center of the box. Present approach resembles the well-known treatment of the helium atom with clamped nucleus

    Investigation of the Composition and Formation Constant of Molecular Complexes

    Full text link

    Machine-learned cloud classes from satellite data for process-oriented climate model evaluation

    Get PDF
    Clouds play a key role in regulating climate change but are difficult to simulate within Earth system models (ESMs). Improving the representation of clouds is one of the key tasks towards more robust climate change projections. This study introduces a new machine-learning based framework relying on satellite observations to improve understanding of the representation of clouds and their relevant processes in climate models. The proposed method is capable of assigning distributions of established cloud types to coarse data. It facilitates a more objective evaluation of clouds in ESMs and improves the consistency of cloud process analysis. The method is built on satellite data from the MODIS instrument labelled by deep neural networks with cloud types defined by the World Meteorological Organization (WMO), using cloud type labels from CloudSat as ground truth. The method is applicable to datasets with information about physical cloud variables comparable to MODIS satellite data and at sufficiently high temporal resolution. We apply the method to alternative satellite data from the Cloud\_cci project (ESA Climate Change Initiative), coarse-grained to typical resolutions of climate models. The resulting cloud type distributions are physically consistent and the horizontal resolutions typical of ESMs are sufficient to apply our method. We recommend outputting crucial variables required by our method for future ESM data evaluation. This will enable the use of labelled satellite data for a more systematic evaluation of clouds in climate models.Comment: Main Paper 16 pages, 11 figures. Supporting material 7 Pages, 8 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Thermo-statistical description of gas mixtures from space partitions

    Get PDF
    The new mathematical framework based on the free energy of pure classical fluids presented in [R. D. Rohrmann, Physica A 347, 221 (2005)] is extended to multi-component systems to determine thermodynamic and structural properties of chemically complex fluids. Presently, the theory focuses on DD-dimensional mixtures in the low-density limit (packing factor η<0.01\eta < 0.01). The formalism combines the free-energy minimization technique with space partitions that assign an available volume vv to each particle. vv is related to the closeness of the nearest neighbor and provides an useful tool to evaluate the perturbations experimented by particles in a fluid. The theory shows a close relationship between statistical geometry and statistical mechanics. New, unconventional thermodynamic variables and mathematical identities are derived as a result of the space division. Thermodynamic potentials μil\mu_{il}, conjugate variable of the populations NilN_{il} of particles class ii with the nearest neighbors of class ll are defined and their relationships with the usual chemical potentials μi\mu_i are established. Systems of hard spheres are treated as illustrative examples and their thermodynamics functions are derived analytically. The low-density expressions obtained agree nicely with those of scaled-particle theory and Percus-Yevick approximation. Several pair distribution functions are introduced and evaluated. Analytical expressions are also presented for hard spheres with attractive forces due to K\^ac-tails and square-well potentials. Finally, we derive general chemical equilibrium conditions.Comment: 14 pages, 8 figures. Accepted for publication in Physical Review

    On possible skewon effects on light propagation

    Full text link
    We start from a local and linear spacetime relation between the electromagnetic excitation and the field strength. Then we study the generally covariant Fresnel surfaces for light rays and light waves. The metric and the connection of spacetime are left unspecified. Accordingly, our framework is ideally suited for a search of possible violations of the Lorentz symmetry in the photon sector of the extended standard model. We discuss how the skewon part of the constitutive tensor, if suitably parametrized, influences the Fresnel surfaces and disturbs the light cones of vacuum electrodynamics. Conditions are specified that yield the reduction of the original quartic Fresnel surface to the double light cone structure (birefringence) and to the single light cone. Qualitatively, the effects of the real skewon field can be compared to those in absorbing material media. In contrast, the imaginary skewon field can be interpreted in terms of non-absorbing media with natural optical activity and Faraday effects. The astrophysical data on gamma-ray bursts are used for deriving an upper limit for the magnitude of the skewon field.Comment: Revtex, 29 pages, 10 figures, references added, text as in the published versio
    • …
    corecore