31 research outputs found

    Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability

    Full text link
    This study investigates the effect of three spent Agaricus bisporus substrate (SAS) application methods on bioremediation of soil multi-polluted with Pb and PAH from close to a shooting range with respect natural attenuation (SM). The remediation treatments involve (i) use of sterilized SAS to biostimulate the inherent soil microbiota (SSAS) and two bioaugmentation possibilities (ii) its use without previous treatment to inoculate A. bisporus and inherent microbiota (SAS) or (iii) SAS sterilization and further A. bisporus re-inoculation (Abisp). The efficiency of each bioremediation microcosm was evaluated by: fungal activity, heterotrophic and PAH-degrading bacterial population, PAH removal, Pb mobility and soil eco-toxicity. Biostimulation of the native soil microbiology (SSAS) achieved similar levels of PAH biodegradation as SM and poor soil detoxification. Bioaugmented microcosms produced higher PAH removal and eco-toxicity reduction via different routes. SAS increased the PAH-degrading bacterial population, but lowered fungal activity. Abisp was a good inoculum carrier for A. bisporus exhibiting high levels of ligninolytic activity, the total and PAH-degrading bacteria population increased with incubation time. The three SAS applications produced slight Pb mobilization (<0.3%). SAS sterilization and further A. bisporus re-inoculation (Abisp) proved the best application method to remove PAH, mainly BaP, and detoxify the multi-polluted soilThis work was financially supported by the Ministry of Economy and Competitiveness of Spain (Project CTM2013-47874-C2-R

    Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil

    Full text link
    Soils impregnated with creosote contain high concentrations of polycyclic aromatic hydrocarbons (PAH). To bioremediate these soils and avoid PAH spread, different bioremediation strategies were tested, based on natural attenuation, biochar application, wheat straw biostimulation, Pleurotus ostreatus mycoremediation, and the novel sequential application of biochar for 21 days and P. ostreatus 21 days more. Soil was sampled after 21 and 42 days after the remediation application. The efficiency and effectiveness of each remediation treatment were assessed according to PAH degradation and immobilization, fungal and bacterial development, soil eco-toxicity and legal considerations. Natural attenuation and biochar treatments did not achieve adequate PAH removal and soil eco-toxicity reduction. Biostimulation showed the highest bacterial development but low PAH degradation rate. Mycoremediation achieved the best PAH degradation rate and the lowest bioavailable fraction and soil eco-toxicity. This bioremediation strategy achieved PAH concentrations below Spanish legislation for contaminated soils (RD 9/2005). Sequential application of biochar and P. ostreatus was the second treatment most effective for PAH biodegradation and immobilization. However, the activity of P. ostreatus was increased by previous biochar application and PAH degradation efficiency was increased. Therefore, the combined strategy for PAH degradation have high potential to increase remediation efficiencyThis work was financially supported by the Ministry of Science and Innovation of Spain (Project CTM2009-13140-C02-02

    Degradation of tetracyclines and sulfonamides by stevensite- and biochar-immobilized laccase systems and impact on residual antibiotic activity

    Full text link
    BACKGROUND: Stevensite and biochar were investigated to covalently immobilize laccase from Myceliophthora thermophila (MtL) and Pleurotus eryngii (PeL) through the sequential application of aminopropyltriethoxysilane and glutaraldehyde. The immobilized preparations were tested to remove three tetracyclines and six sulfonamides at 0.1 mmol L−1 of each antibiotic. Degradation experiments were conducted both in the absence and in the presence (0.2 mmol L−1) of ABTS, 1-hydroxybenzotriazol (HBT), syringaldehyde or violuric acid. The residual antibiotic activity was tested towards five bacterial species and a bacterial consortium from wastewater. RESULTS: Higher values of activity yields (74% and 70.3%) and catalytic capabilities (1426 and 1405 IU g−1) were obtained with PeL on stevensite and biochar than with MtL. Stevensite enabled higher reusability and storage stability than biochar. Best removals of tetracyclines and sulfonamides were obtained with immobilized-laccase systems coupled to ABTS or syringaldehyde. Immobilized-laccase/ABTS systems removed 100% of tetracyclines while only chlortetracycline was completely removed in the presence of syringaldehyde. With ABTS, the most effectively removed sulfonamides were sulfathiazole and sulfadiazine (up to 100% and 54%), while syringaldehyde best supported the removal of sulfanilamide, sulfamethazine and sulfamethoxazole (up to 42%, 45% and 46%, respectively). In some cases, an effective antibiotics removal led to either low or no residual antibiotic activity. CONCLUSION: MtL and PeL were immobilized successfully on biochar and stevensite. The addition of either ABTS or syringaldehyde enhanced significant removals, up to 100%, of tetracyclines and sulfonamides by the immobilized laccase systems. Noteworthy, biochar-immobilized laccases/ABTS led to complete suppression of the antibiotic activity of tetracyclines. © 2018 Society of Chemical Industry

    Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation

    Full text link
    Different applications of spent Agaricus bisporus substrate (SAS), a widespread agro-industrial waste, were investigated with respect to the remediation of a historically polluted soil with Polycyclic Aromatic Hydrocarbons (PAH). In one treatment, the waste was sterilized (SSAS) prior to its application in order to assess its ability to biostimulate, as an organic amendment, the resident soil microbiota and ensuing contaminant degradation. For the other treatments, two bioaugmentation approaches were investigated; the first involved the use of the waste itself and thus implied the application of A. bisporus and the inherent microbiota of the waste. In the second treatment, SAS was sterilized and inoculated again with the fungus to assess its ability to act as a fungal carrier. All these treatments were compared with natural attenuation in terms of their impact on soil heterotrophic and PAH-degrading bacteria, fungal growth, biodiversity of soil microbiota and ability to affect PAH bioavailability and ensuing degradation and detoxification. Results clearly showed that historically PAH contaminated soil was not amenable to natural attenuation. Conversely, the addition of sterilized spent A. bisporus substrate to the soil stimulated resident soil bacteria with ensuing high removals of 3-ring PAH. Both augmentation treatments were more effective in removing highly condensed PAH, some of which known to possess a significant carcinogenic activity. Regardless of the mode of application, the present results strongly support the adequacy of SAS for environmental remediation purposes and open the way to an attractive recycling option of this wasteThis work was financially supported by the Ministry of Science and Innovation of Spain (Project CTM2009-13140-C02-02

    Assessment of different spent mushroom substrates to bioremediate soils contaminated with petroleum hydrocarbons

    Full text link
    Bioremediation techniques are being developed as substitutes for physical–chemical methodologies that are expensive and not sustainable. For example, using the agricultural waste spent mushroom substrate (SMS) which contains valuable microbiota for soil bioremediation. In this work, SMSs of four cultivated fungal species, Pleurotus eryngii, Lentinula edodes, Pleurotus ostreatus, and Agaricus bisporus were evaluated for the bioremediation of soils contaminated by petroleum hydrocarbons (TPHs). The bioremediation test was carried out by mixing the four different SMSs with the TPH-contaminated soil in comparison with an unamended soil control to assess its natural attenuation. To determine the most efficient bioremediation strategy, hydrolase, dehydrogenase, and ligninolytic activities, ergosterol content, and percentage of TPHs degradation (total and by chains) were determined at the end of the assay at 40 days. The application of SMS significantly improved the degradation of TPHs with respect to the control. The most effective spent mushroom substrate to degrade TPHs was A. bisporus, followed by L. edodes and P. ostreatus. Similar results were obtained for the removal of aliphatic and aromatic hydrocarbons. The results showed the effectiveness of SMS to remove aliphatic and aromatic hydrocarbons from C10 to C35. This work demonstrates an alternative to valorizing an abundant agricultural waste as SMS to bioremediate contaminated soil

    Design of a hydroponic test to evaluate the biostimulant potential of new organic and organomineral products

    Full text link
    Currently, the use of biostimulants is increasing due to the need for greater productivity in agriculture. The European Union presented a new fertilizer regulation, UE 2019/1009, appearing for the first time the concept of biostimulants. Its main objective is to improve the efficiency of plants in the absorption and assimilation of nutrients or their tolerance to biotic or abiotic stresses, regardless of the nutrient content of the product. The objective of this work consisted in the development of a methodology to test in a short-term experiment the efficiency of commercial products as potential biostimulants in a crop of Capsicum annuum L. in strictly hydroponic conditions. Plants were irrigated with the respective product at the recommended dose in water, without the addition of other nutritional sources for 15 days. At the end of the test, the weights of the root and aerial part, the humidity, the chlorophyll indexes, and nutritional leaf content, as well as the volume and morphology of the roots and plants were obtained to evaluate the biostimulant effects on the plant growth and development. The water consumption was also evaluated to analyze whether any of the products generates greater water savings. The study concluded that the nutritive solutions with biostimulants produced a greater increase in the weight of the plant and a lower percentage of leaf moisture, as well as higher values of leaf chlorophyll. On the other hand, it was humic, fulvic, and algae biostimulants that presented the best values in terms of water savings. The methodology developed could be set to test in the short term the biostimulant potential of new productsThis research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sector

    An assessment of Pleurotus ostreatus to remove sulfonamides, and its role as a biofilter based on its own spent mushroom substrate

    Full text link
    A double strategy based on the removal of sulfonamide antibiotics by Pleurotus ostreatus and adsorption on spent mushroom substrate was assessed to reclaim contaminated wastewater. P. ostreatus was firstly tested in a liquid medium fortified with five sulfonamides: sulfamethoxazole, sulfadiazine, sulfathiazole, sulfapyridine and sulfamethazine, to evaluate its capacity to remove them and to test for any adverse effects on fungal growth and for any reduction in residual antibiotic activity. P. ostreatus was effective in removing sulfonamides up to 83 to 91% of the applied doses over 14 days. The antibiotic activity of the sulfonamide residues was reduced by 50%. Sulfamethoxazole transformation products by laccase were identified, and the degradation pathway was proposed. In addition, P. ostreatus growth on a semi-solid medium of spent mushroom substrate and malt extract agar was used to develop a biofilter for the removal of sulfonamides from real wastewater. The biofilter was able to remove more than 90% of the sulfonamide concentrations over 24 h by combining adsorption and biodegradation mechanisms.This work was supported by the Ministry of Science and Innovation of Spain (Project AGL2016-78490-R

    Enhancement of methane production from livestock manure with pre-treatments based in fungi of genus Pleurotus

    Full text link
    Livestock manure, traditionally used just as fertilizer, can be energetically valued to produce biogas as an attractive alternative, since nowadays, energy production and its cost stands for a pressing problem around the world. Nevertheless, the presence of lignin in manure hinders the production of methane. This could be improved by pre-treating the manure with ligninolytic fungi, able to break lignin and therefore facilitate the hydrolysis step for the hydrolytic bacteria, yielding higher volumes of biomethane. Three strategies of incubation with living fungi of genus Pleurotus were evaluated to enhance methane production from livestock manure mixed with bedding material: short term (two weeks 2L container) and long term (two months 400 L container) and 24 h (2 L container) with a crude water extraction of Pleurotus extracellular enzymes. The positive effect of the fungal treatment was observed in the three strategies obtaining an increase in methane production with respect to the control manure of 7% at short term, 111% at long term and 173% (crude enzymatic extract). Consequently, the strategy of using crude enzyme extracts from Pleurotus to improve hydrolysis step as pre-treatment of manure should be considered as a novel, easy, cheap and promising tool to optimize methane productionThis research was funded by a contract with the company Kepler Ingeniería y Ecogestión SL managed by Foundation from University Autónoma of Madrid (FUAM) and with reference 01091

    Mycoremediation of soils polluted with trichloroethylene: first evidence of pleurotus genus effectiveness

    Full text link
    Trichloroethylene (TCE) is a proven carcinogenic chlorinated organic compound widely used as a solvent in industrial cleaning solutions; it is easily found in the soil, air, and water and is a hazardous environmental pollutant. Most studies have attempted to remove TCE from air and water using different anaerobic bacteria species. In addition, a few have used white-rot fungi, although there are hardly any in soil. The objective of the present work is to assess TCE removal efficiency using two species of the genus Pleurotus that have not been tested before: Pleurotus ostreatus and Pleurotus eryngii, growing on a sandy loam soil. These fungi presented different intra- and extracellular enzymatic systems (chytochrome P450 (CYP450), laccase, Mn peroxidase (MnP)) capable of aerobically degrading TCE to less harmful compounds. The potential toxicity of TCE to P. ostreatus and P. eryngii was firstly tested in a TCE-spiked liquid broth (70 mg L−1 and 140 mg L−1) for 14 days. Then, both fungi were assessed for their ability to degrade the pollutant in sandy loam soil spiked with 140 mg kg−1 of TCE. P. ostreatus and P. eryngii improved the natural dissipation of TCE from soil by 44%. Extracellular enzymes were poorly expressed, but mainly in the presence of the contaminant, in accordance with the hypothesis of the involvement of CYP450
    corecore