22 research outputs found

    Probing Real Sensory Worlds of Receivers with Unsupervised Clustering

    Get PDF
    The task of an organism to extract information about the external environment from sensory signals is based entirely on the analysis of ongoing afferent spike activity provided by the sense organs. We investigate the processing of auditory stimuli by an acoustic interneuron of insects. In contrast to most previous work we do this by using stimuli and neurophysiological recordings directly in the nocturnal tropical rainforest, where the insect communicates. Different from typical recordings in sound proof laboratories, strong environmental noise from multiple sound sources interferes with the perception of acoustic signals in these realistic scenarios. We apply a recently developed unsupervised machine learning algorithm based on probabilistic inference to find frequently occurring firing patterns in the response of the acoustic interneuron. We can thus ask how much information the central nervous system of the receiver can extract from bursts without ever being told which type and which variants of bursts are characteristic for particular stimuli. Our results show that the reliability of burst coding in the time domain is so high that identical stimuli lead to extremely similar spike pattern responses, even for different preparations on different dates, and even if one of the preparations is recorded outdoors and the other one in the sound proof lab. Simultaneous recordings in two preparations exposed to the same acoustic environment reveal that characteristics of burst patterns are largely preserved among individuals of the same species. Our study shows that burst coding can provide a reliable mechanism for acoustic insects to classify and discriminate signals under very noisy real-world conditions. This gives new insights into the neural mechanisms potentially used by bushcrickets to discriminate conspecific songs from sounds of predators in similar carrier frequency bands

    The Cercal Organ May Provide Singing Tettigoniids a Backup Sensory System for the Detection of Eavesdropping Bats

    Get PDF
    Conspicuous signals, such as the calling songs of tettigoniids, are intended to attract mates but may also unintentionally attract predators. Among them bats that listen to prey-generated sounds constitute a predation pressure for many acoustically communicating insects as well as frogs. As an adaptation to protect against bat predation many insect species evolved auditory sensitivity to bat-emitted echolocation signals. Recently, the European mouse-eared bat species Myotis myotis and M. blythii oxygnathus were found to eavesdrop on calling songs of the tettigoniid Tettigonia cantans. These gleaning bats emit rather faint echolocation signals when approaching prey and singing insects may have difficulty detecting acoustic predator-related signals. The aim of this study was to determine (1) if loud self-generated sound produced by European tettigoniids impairs the detection of pulsed ultrasound and (2) if wind-sensors on the cercal organ function as a sensory backup system for bat detection in tettigoniids. We addressed these questions by combining a behavioral approach to study the response of two European tettigoniid species to pulsed ultrasound, together with an electrophysiological approach to record the activity of wind-sensitive interneurons during real attacks of the European mouse-eared bat species Myotis myotis. Results showed that singing T. cantans males did not respond to sequences of ultrasound pulses, whereas singing T. viridissima did respond with predominantly brief song pauses when ultrasound pulses fell into silent intervals or were coincident with the production of soft hemi-syllables. This result, however, strongly depended on ambient temperature with a lower probability for song interruption observable at 21°C compared to 28°C. Using extracellular recordings, dorsal giant interneurons of tettigoniids were shown to fire regular bursts in response to attacking bats. Between the first response of wind-sensitive interneurons and contact, a mean time lag of 860 ms was found. This time interval corresponds to a bat-to-prey distance of ca. 72 cm. This result demonstrates the efficiency of the cercal system of tettigoniids in detecting attacking bats and suggests this sensory system to be particularly valuable for singing insects that are targeted by eavesdropping bats

    Bursts and Isolated Spikes Code for Opposite Movement Directions in Midbrain Electrosensory Neurons

    Get PDF
    Directional selectivity, in which neurons respond strongly to an object moving in a given direction but weakly or not at all to the same object moving in the opposite direction, is a crucial computation that is thought to provide a neural correlate of motion perception. However, directional selectivity has been traditionally quantified by using the full spike train, which does not take into account particular action potential patterns. We investigated how different action potential patterns, namely bursts (i.e. packets of action potentials followed by quiescence) and isolated spikes, contribute to movement direction coding in a mathematical model of midbrain electrosensory neurons. We found that bursts and isolated spikes could be selectively elicited when the same object moved in opposite directions. In particular, it was possible to find parameter values for which our model neuron did not display directional selectivity when the full spike train was considered but displayed strong directional selectivity when bursts or isolated spikes were instead considered. Further analysis of our model revealed that an intrinsic burst mechanism based on subthreshold T-type calcium channels was not required to observe parameter regimes for which bursts and isolated spikes code for opposite movement directions. However, this burst mechanism enhanced the range of parameter values for which such regimes were observed. Experimental recordings from midbrain neurons confirmed our modeling prediction that bursts and isolated spikes can indeed code for opposite movement directions. Finally, we quantified the performance of a plausible neural circuit and found that it could respond more or less selectively to isolated spikes for a wide range of parameter values when compared with an interspike interval threshold. Our results thus show for the first time that different action potential patterns can differentially encode movement and that traditional measures of directional selectivity need to be revised in such cases

    Heterosis × environment interaction in maize: What drives heterosis for grain yield?

    No full text
    Variation in mean heterosis in maize over a range of environments can be expected when hybrids and inbred lines respond differently to environmental stimuli however, the magnitude and nature of heterosis x environment (H x E) interaction has not been adequately described. The objectives of this work were (i) to determine the effects of environmental variability on the expression of grain yield and ecophysiological traits in a set of six inbred lines and their derived hybrids grown in 14 environments (year x nitrogen x water regime combinations) and (ii) to what extent H x E interactions are of general importance for the expression of heterosis for these traits. Field experiments were conducted at Pergamino, Argentina during 2002-2003, 2003-2004, 2004-2005, 2006-2007 and 2008-2009 growing seasons. The variability among experiments was manipulated by applying supplemental irrigation or dry land farming and two nitrogen levels. Main physiological and quantitative determinants of grain yield were measured and mid parent heterosis (MPH) computed for each trait. Genotype x environment interaction was investigated using the joint regression.  For plant grain yield (PGY), hybrids had a significant but moderate association between environmental sensitivity and mean genotype value, whereas inbred lines did not show association. For HI hybrids showed greater mean values than inbred, however, regression coefficients of both genotype groups tended to overlap slightly. A decrease in environmental quality led to a decline in the expression of heterosis for PGY but not for HI. A bilinear model adequately described the association between heterosis for PGY and environmental quality and we identified the existence of a threshold value beyond which further increases in environmental quality did not translate into higher heterosis for PGY. A similar response pattern was found between PGY MPH and BiomassPM MPH. Despite the greater heterosis for BiomassPM, further increases in PGY MPH could not be realized above a threshold value of 115 g pl for BiomassPM MPH representative of high quality environments. HI MPH was the major factor that set a limit to PGY.Fil: Munaro, E. M.. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; ArgentinaFil: Eyherabide, G. H.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; ArgentinaFil: D'andrea, Karina Elizabeth. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario; ArgentinaFil: Cirilo, A. G.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; ArgentinaFil: Otegui, Maria Elena. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentin
    corecore