4 research outputs found

    A Robinson characterization of finite PσTP\sigma T-groups

    Full text link
    Let σ={σi∣i∈I}\sigma =\{\sigma_{i} | i\in I\} be some partition of the set of all primes P\Bbb{P} and let GG be a finite group. Then GG is said to be σ\sigma -full if GG has a Hall σi\sigma _{i}-subgroup for all ii. A subgroup AA of GG is said to be σ\sigma-permutable in GG provided GG is σ\sigma -full and AA permutes with all Hall σi\sigma _{i}-subgroups HH of GG (that is, AH=HAAH=HA) for all ii. We obtain a characterization of finite groups GG in which σ\sigma-permutability is a transitive relation in GG, that is, if KK is a σ{\sigma}-permutable subgroup of HH and HH is a σ{\sigma}-permutable subgroup of GG, then KK is a σ{\sigma}-permutable subgroup of GG.Comment: 15 pages. arXiv admin note: text overlap with arXiv:1704.0250

    Seasonal influenza vaccination coverage and its determinants among nursing homes personnel in western France

    No full text
    International audienceBackground: Influenza-associated deaths is an important risk for the elderly in nursing homes (NHs) worldwide. Vaccination coverage among residents is high but poorly effective due to immunosenescence. Hence, vaccination of personnel is an efficient way to protect residents. Our objective was to quantify the seasonal influenza vaccination (IV) coverage among NH for elderly workers and identify its determinants in France.Methods: We conducted a cross-sectional study in March 2016 in a randomized sample of NHs of the Ille-et-Vilaine department of Brittany, in western France. A standardized questionnaire was administered to a randomized sample of NH workers for face-to-face interviews. General data about the establishment was also collected.Results: Among the 33 NHs surveyed, IV coverage for the 2015–2016 season among permanent workers was estimated at 20% (95% Confidence Interval (CI) 15.3%–26.4%) ranging from 0% to 69% depending on the establishments surveyed. Moreover, IV was associated with having previously experienced a “severe” influenza episode in the past (Prevalence Ratio 1.48, 95% CI 1.01–2.17), and varied by professional categories (p < 0.004) with better coverage among administrative staff. Better knowledge about influenza prevention tools was also correlated (p < 0.001) with a higher IV coverage. Individual perceptions of vaccination benefits had a significant influence on the IV coverage (p < 0.001). Although IV coverage did not reach a high rate, our study showed that personnel considered themselves sufficiently informed about IV.Conclusions: IV coverage remains low in the NH worker population in Ille-et-Vilaine and also possibly in France. Strong variations of IV coverage among NHs suggest that management and working environment play an important role. To overcome vaccine “hesitancy”, specific communication tools may be required to be adapted to the various NH professionals to improve influenza prevention

    Seasonal influenza vaccination coverage and its determinants among nursing homes personnel in western France

    No full text
    Abstract Background Influenza-associated deaths is an important risk for the elderly in nursing homes (NHs) worldwide. Vaccination coverage among residents is high but poorly effective due to immunosenescence. Hence, vaccination of personnel is an efficient way to protect residents. Our objective was to quantify the seasonal influenza vaccination (IV) coverage among NH for elderly workers and identify its determinants in France. Methods We conducted a cross-sectional study in March 2016 in a randomized sample of NHs of the Ille-et-Vilaine department of Brittany, in western France. A standardized questionnaire was administered to a randomized sample of NH workers for face-to-face interviews. General data about the establishment was also collected. Results Among the 33 NHs surveyed, IV coverage for the 2015–2016 season among permanent workers was estimated at 20% (95% Confidence Interval (CI) 15.3%–26.4%) ranging from 0% to 69% depending on the establishments surveyed. Moreover, IV was associated with having previously experienced a “severe” influenza episode in the past (Prevalence Ratio 1.48, 95% CI 1.01–2.17), and varied by professional categories (p < 0.004) with better coverage among administrative staff. Better knowledge about influenza prevention tools was also correlated (p < 0.001) with a higher IV coverage. Individual perceptions of vaccination benefits had a significant influence on the IV coverage (p < 0.001). Although IV coverage did not reach a high rate, our study showed that personnel considered themselves sufficiently informed about IV. Conclusions IV coverage remains low in the NH worker population in Ille-et-Vilaine and also possibly in France. Strong variations of IV coverage among NHs suggest that management and working environment play an important role. To overcome vaccine “hesitancy”, specific communication tools may be required to be adapted to the various NH professionals to improve influenza prevention

    SARS-CoV-2 active infection and antibodies amongst health personnel during the outbreak in Cameroon: Strengthening the health system for response to future public health emergencies.

    No full text
    BackgroundHealth personnel (HP) are on the frontlines during response to public health emergencies like COVID-19. This risk of exposure suggests the need for safety in responding to any pandemic. Therefore, to ascertain the rate of SARS-CoV-2 infection and immunity, and their determinants amongst HP become relevant.MethodsA cross sectional health facility-based study was carried-out amongst HP in the Centre Region of Cameroon from 1st February to 30th June 2021. Characteristics and access to preventive tools were collected using face-to-face administered questionnaire. Nasopharyngeal swabs and whole blood were collected for PCR, IgG and IgM testing respectively. STATA version 17 software was used for data analysis. Determinants of COVID-19 infection were explored by estimating crude and adjusted Odd Ratio.ResultsOut of 510 HP reached, 458 were enrolled with mean age of 35 (±10) years. Thirty-four (7.4%) were PCR-positive to SARS-CoV-2 with 73.5% being clinicians versus 9 (26.4%) non-clinicians (p = 0.05). Sero-positivity to SARS-CoV-2 IgG/IgM was 40.2% (184/458), with 84.2% being clinicians versus 29 (15.8%) non-clinicians (p = 0.733). Amongst the 34 HP with PCR-positivity, 16 (47%) had no antibodies, while, 15 (44%) were IgG only. An estimate of HP (43.7%) had at least an evidence of PCR, IgG or IgM contact to COVID-19. Determinants of PCR-positivity was being clinical staff (AOR = 0.29, P = 0.039); and that of IgG/IgM were being non clinical staff (AOR = 0.41, p = 0.018) and regular use of face masks (AOR = 0.44, p = 0.001). HP trained on IPC (24%) were mainly from peripheral level (74.7%, p = 0.002).ConclusionActive infections were within the range of pandemic control (<10%). However, around two-fifths of participants have had contact with the virus, indicating that HP remains a population at risk of COVID-19 and other similarly-transmitted epidemic prone diseases, and also an important source of transmission. There is need of vaccine to achieve protectiveness, and optimal response also requires capacity building to improve the health system when challenged by a future pandemic
    corecore